Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neural network (machine learning)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Self-learning==== Self-learning in neural networks was introduced in 1982 along with a neural network capable of self-learning named ''crossbar adaptive array'' (CAA).<ref>Bozinovski, S. (1982). "A self-learning system using secondary reinforcement". In R. Trappl (ed.) Cybernetics and Systems Research: Proceedings of the Sixth European Meeting on Cybernetics and Systems Research. North Holland. pp. 397β402. {{ISBN|978-0-444-86488-8}}.</ref> It is a system with only one input, situation s, and only one output, action (or behavior) a. It has neither external advice input nor external reinforcement input from the environment. The CAA computes, in a crossbar fashion, both decisions about actions and emotions (feelings) about encountered situations. The system is driven by the interaction between cognition and emotion.<ref>Bozinovski, S. (2014) "[https://core.ac.uk/download/pdf/81973924.pdf Modeling mechanisms of cognition-emotion interaction in artificial neural networks, since 1981] {{Webarchive|url=https://web.archive.org/web/20190323204838/https://core.ac.uk/download/pdf/81973924.pdf |date=23 March 2019 }}." Procedia Computer Science p. 255-263</ref> Given the memory matrix, W =||w(a,s)||, the crossbar self-learning algorithm in each iteration performs the following computation: In situation s perform action a; Receive consequence situation s'; Compute emotion of being in consequence situation v(s'); Update crossbar memory w'(a,s) = w(a,s) + v(s'). The backpropagated value (secondary reinforcement) is the emotion toward the consequence situation. The CAA exists in two environments, one is behavioral environment where it behaves, and the other is genetic environment, where from it receives initial emotions (only once) about to be encountered situations in the behavioral environment. Having received the genome vector (species vector) from the genetic environment, the CAA will learn a goal-seeking behavior, in the behavioral environment that contains both desirable and undesirable situations.<ref>{{cite journal | last1 = Bozinovski | first1 = Stevo | last2 = Bozinovska | first2 = Liljana | year = 2001 | title = Self-learning agents: A connectionist theory of emotion based on crossbar value judgment | journal = Cybernetics and Systems | volume = 32 | issue = 6| pages = 637β667 | doi = 10.1080/01969720118145 | s2cid = 8944741 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)