Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Noether's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example 3: Conformal transformation === Both examples 1 and 2 are over a 1-dimensional manifold (time). An example involving spacetime is a [[conformal transformation]] of a massless real scalar field with a [[Quartic interaction|quartic potential]] in (3 + 1)-[[Minkowski spacetime]]. :<math>\begin{align} \mathcal{S}[\varphi] & = \int \mathcal{L}\left[\varphi (x), \partial_\mu \varphi (x)\right] d^4 x \\[3pt] & = \int \left(\frac{1}{2}\partial^\mu \varphi \partial_\mu \varphi - \lambda \varphi^4\right) d^4 x \end{align}</math> For ''Q'', consider the generator of a spacetime rescaling. In other words, :<math>Q[\varphi(x)] = x^\mu\partial_\mu \varphi(x) + \varphi(x). </math> The second term on the right hand side is due to the "conformal weight" of <math>\varphi</math>. And :<math>Q[\mathcal{L}] = \partial^\mu\varphi\left(\partial_\mu\varphi + x^\nu\partial_\mu\partial_\nu\varphi + \partial_\mu\varphi\right) - 4\lambda\varphi^3\left(x^\mu\partial_\mu\varphi + \varphi\right).</math> This has the form of :<math>\partial_\mu\left[\frac{1}{2}x^\mu\partial^\nu\varphi\partial_\nu\varphi - \lambda x^\mu \varphi^4 \right] = \partial_\mu\left(x^\mu\mathcal{L}\right)</math> (where we have performed a change of dummy indices) so set :<math>f^\mu = x^\mu\mathcal{L}.</math> Then :<math>\begin{align} j^\mu & = \left[\frac{\partial}{\partial(\partial_\mu\varphi)}\mathcal{L}\right]Q[\varphi]-f^\mu \\ & = \partial^\mu\varphi\left(x^\nu\partial_\nu\varphi + \varphi\right) - x^\mu\left(\frac 1 2 \partial^\nu\varphi\partial_\nu\varphi - \lambda\varphi^4\right). \end{align}</math> Noether's theorem states that <math>\partial_\mu j^\mu = 0</math> (as one may explicitly check by substituting the Euler–Lagrange equations into the left hand side). If one tries to find the [[Ward–Takahashi identity|Ward–Takahashi]] analog of this equation, one runs into a problem because of [[anomaly (physics)|anomalies]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)