Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===''B''<sub>''n''</sub>=== {| class=wikitable |+ Simple roots in ''B''<sub>4</sub> |- ! ||e<sub>1</sub>||e<sub>2</sub>||e<sub>3</sub>||e<sub>4</sub> |- !α<sub>1</sub> | 1||−1||0||0 |- !α<sub>2</sub> |0|| 1||−1||0 |- !α<sub>3</sub> |0||0|| 1||−1 |- !α<sub>4</sub> |0||0|| 0|| 1 |- BGCOLOR="#ddd" |colspan=5 align=center|{{Dynkin2|node_n1|3|node_n2|3|node_n3|4b|nodeg_n4}} |} Let ''E'' = '''R'''<sup>''n''</sup>, and let Φ consist of all integer vectors in ''E'' of length 1 or {{radic|2}}. The total number of roots is 2''n''<sup>2</sup>. One choice of simple roots is {{math|1='''α'''<sub>''i''</sub> = '''e'''<sub>''i''</sub> – '''e'''<sub>''i''+1</sub>}} for {{math|1 ≤ ''i'' ≤ ''n'' – 1}} (the above choice of simple roots for ''A''<sub>''n''−1</sub>), and the shorter root {{math|1='''α'''<sub>''n''</sub> = '''e'''<sub>''n''</sub>}}. The reflection ''σ''<sub>''n''</sub> through the hyperplane perpendicular to the short root '''α'''<sub>''n''</sub> is of course simply negation of the ''n''th coordinate. For the long simple root '''α'''<sub>''n''−1</sub>, σ<sub>''n''−1</sub>('''α'''<sub>''n''</sub>) = '''α'''<sub>''n''</sub> + '''α'''<sub>''n''−1</sub>, but for reflection perpendicular to the short root, ''σ''<sub>''n''</sub>('''α'''<sub>''n''−1</sub>) = '''α'''<sub>''n''−1</sub> + 2'''α'''<sub>''n''</sub>, a difference by a multiple of 2 instead of 1. The ''B''<sub>''n''</sub> root lattice—that is, the lattice generated by the ''B''<sub>''n''</sub> roots—consists of all integer vectors. ''B''<sub>1</sub> is isomorphic to ''A''<sub>1</sub> via scaling by {{radic|2}}, and is therefore not a distinct root system. {{Clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)