Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Science
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Scientific method === [[File:The Scientific Method.svg|thumb|A diagram variant of scientific method represented as an [[Scientific method#Elements of the scientific method|ongoing process]]|alt=6 steps of the scientific method in a loop]] Scientific research involves using the [[scientific method]], which seeks to [[objectivity (science)|objectively]] explain the events of [[nature]] in a [[reproducible]] way.<ref name="di Francia1976">{{cite book |last=di Francia |first=Giuliano Toraldo |chapter=The method of physics |title=The Investigation of the Physical World |publisher=Cambridge University Press |year=1976 |pages=1β52 |isbn=978-0-521-29925-1 |quote=The amazing point is that for the first time since the discovery of mathematics, a method has been introduced, the results of which have an intersubjective value!}}</ref> Scientists usually take for granted a set of basic assumptions that are needed to justify the scientific method: there is an [[objective reality]] shared by all rational observers; this objective reality is governed by [[natural law]]s; these laws were discovered by means of systematic [[observation]] and experimentation.<ref name="Heilbron2003"/> Mathematics is essential in the formation of [[hypotheses]], [[theories]], and laws, because it is used extensively in quantitative modelling, observing, and collecting [[measurements]].<ref>{{cite book |last=Popper |first=Karl R. |url=https://archive.org/details/logicscientificd00popp_574 |title=The Logic of Scientific Discovery |publisher=Routledge |year=2002e |isbn=978-0-415-27844-7 |location=New York |pages=[https://archive.org/details/logicscientificd00popp_574/page/n133 3]β26 |chapter=The problem of the empirical basis |orig-date=1959 |url-access=limited}}</ref> Statistics is used to summarise and analyse data, which allows scientists to assess the reliability of experimental results.<ref>{{Cite book |last1=Diggle |first1=Peter J. |author-link=Peter Diggle |title=Statistics and Scientific Method: An Introduction for Students and Researchers |last2=Chetwynd |first2=Amanda G. |author2-link=Amanda Chetwynd |year=2011 |publisher=Oxford University Press |isbn=978-0199543182 |pages=1β2}}</ref> In the scientific method an explanatory [[thought experiment]] or hypothesis is put forward as an explanation using [[Occam's razor|parsimony principles]] and is expected to seek [[consilience]] β fitting with other accepted facts related to an observation or scientific question.<ref>{{cite book |last=Wilson |first=Edward |title=Consilience: The Unity of Knowledge |publisher=Vintage |location=New York |year=1999 |isbn=978-0-679-76867-8}}</ref> This tentative explanation is used to make [[falsifiable]] predictions, which are typically posted before being tested by experimentation. Disproof of a prediction is evidence of progress.<ref name="di Francia1976" />{{Rp|pages=4β5}}<ref>{{cite book |last=Fara |first=Patricia |author-link=Patricia Fara |year=2009 |chapter=Decisions |title=Science: A Four Thousand Year History |publisher=Oxford University Press |isbn=978-0-19-922689-4 |page=[https://archive.org/details/sciencefourthous00fara/page/408 408] |chapter-url=https://archive.org/details/sciencefourthous00fara/page/306}}</ref> Experimentation is especially important in science to help establish [[causal relationships]] to avoid the [[correlation fallacy]], though in some sciences such as astronomy or geology, a predicted observation might be more appropriate.<ref>{{Cite journal |last=Aldrich |first=John |journal=Statistical Science |volume=10 |year=1995 |pages=364β376 |title=Correlations Genuine and Spurious in Pearson and Yule |jstor=2246135 |doi=10.1214/ss/1177009870 |issue=4 |doi-access=free}}</ref> When a hypothesis proves unsatisfactory it is modified or discarded. If the hypothesis survives testing, it may become adopted into the framework of a [[scientific theory]], a [[deductive logic|valid]]ly [[reason]]ed, self-consistent model or framework for describing the behaviour of certain natural events. A theory typically describes the behaviour of much broader sets of observations than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus, a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. Scientists may generate a [[Scientific modelling|model]], an attempt to describe or depict an observation in terms of a logical, physical or mathematical representation, and to generate new hypotheses that can be tested by experimentation.<ref>{{cite book |last1=Nola |first1=Robert |last2=Irzik |first2=GΓΌrol |year=2005 |title=Philosophy, science, education and culture |volume=28 |series=Science & technology education library |isbn=978-1-4020-3769-6 |publisher=Springer |pages=207β230}}</ref> While performing experiments to test hypotheses, scientists may have a preference for one outcome over another.<ref>{{cite web |last=van Gelder |first=Tim |year=1999 |url=http://www.philosophy.unimelb.edu.au/tgelder/papers/HeadsIWin.pdf |title="Heads I win, tails you lose": A Foray Into the Psychology of Philosophy |publisher=University of Melbourne |access-date=28 March 2008 |archive-url=https://web.archive.org/web/20080409054240/http://www.philosophy.unimelb.edu.au/tgelder/papers/HeadsIWin.pdf |archive-date=9 April 2008}}</ref><ref>{{cite web |last=Pease |first=Craig |date=6 September 2006 |archive-url=https://web.archive.org/web/20100619154617/http://law-and-science.net/Science4BLJ/Scientific_Method/Deliberate.bias/Text.htm |archive-date=19 June 2010 |title=Chapter 23. Deliberate bias: Conflict creates bad science |website=Science for Business, Law and Journalism |publisher=Vermont Law School |url=http://law-and-science.net/Science4BLJ/Scientific_Method/Deliberate.bias/Text.htm}}</ref> Eliminating the bias can be achieved through transparency, careful [[experimental design]], and a thorough [[peer review]] process of the experimental results and conclusions.<ref>{{cite book |first=David |last=Shatz |year=2004 |title=Peer Review: A Critical Inquiry |publisher=Rowman & Littlefield |isbn=978-0-7425-1434-8}}</ref><ref>{{cite book |first=Sheldon |last=Krimsky |year=2003 |title=Science in the Private Interest: Has the Lure of Profits Corrupted the Virtue of Biomedical Research |publisher=Rowman & Littlefield |isbn=978-0-7425-1479-9 |url=https://archive.org/details/scienceinprivate0000krim}}</ref> After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.<ref>{{cite book |first1=Ruth Ellen |last1=Bulger |year=2002 |last2=Heitman |first2=Elizabeth |last3=Reiser |first3=Stanley Joel |title=The Ethical Dimensions of the Biological and Health Sciences |edition=2nd |isbn=978-0-521-00886-0 |publisher=Cambridge University Press}}</ref> Taken in its entirety, the scientific method allows for highly creative problem solving while minimising the effects of subjective and [[confirmation bias]].<ref>{{cite web |last=Backer |first=Patricia Ryaby |date=29 October 2004 |url=http://www.engr.sjsu.edu/pabacker/scientific_method.htm |title=What is the scientific method? |publisher=San Jose State University |access-date=28 March 2008 |url-status=dead |archive-url=https://web.archive.org/web/20080408082917/http://www.engr.sjsu.edu/pabacker/scientific_method.htm |archive-date=8 April 2008}}</ref> [[Intersubjective verifiability]], the ability to reach a consensus and reproduce results, is fundamental to the creation of all scientific knowledge.<ref>{{cite book |last=Ziman |first=John |title=Reliable knowledge: An exploration of the grounds for belief in science |publisher=Cambridge University Press |year=1978c |isbn=978-0-521-22087-3 |pages=[https://archive.org/details/reliableknowledg00john/page/42 42β76] |chapter=Common observation |chapter-url=https://archive.org/details/reliableknowledg00john/page/42}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)