Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Series and parallel circuits
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== A common application of series circuit in consumer electronics is in batteries, where several cells connected in series are used to obtain a convenient operating voltage. Two disposable zinc cells in series might power a flashlight or remote control at 3 volts; the battery pack for a hand-held power tool might contain a dozen lithium-ion cells wired in series to provide 48 volts. Series circuits were formerly used for lighting in [[electric multiple units]] trains. For example, if the supply voltage was 600 volts there might be eight 70-volt bulbs in series (total 560 volts) plus a [[resistor]] to drop the remaining 40 volts. Series circuits for train lighting were superseded, first by [[motor-generator]]s, then by [[Solid state (electronics)|solid state]] devices. Series resistance can also be applied to the arrangement of blood vessels within a given organ. Each organ is supplied by a large artery, smaller arteries, arterioles, capillaries, and veins arranged in series. The total resistance is the sum of the individual resistances, as expressed by the following equation: {{math|1=''R''<sub>total</sub> = ''R''<sub>artery</sub> + ''R''<sub>arterioles</sub> + ''R''<sub>capillaries</sub>}}. The largest proportion of resistance in this series is contributed by the arterioles.<ref name="BRS"/> Parallel resistance is illustrated by the [[circulatory system]]. Each organ is supplied by an artery that branches off the [[aorta]]. The total resistance of this parallel arrangement is expressed by the following equation: {{math|1=1/''R''<sub>total</sub> = 1/''R''<sub>a</sub> + 1/''R''<sub>b</sub> + ... + 1/''R''<sub>n</sub>}}. {{math|''R''<sub>a</sub>}}, {{math|''R''<sub>b</sub>}}, and {{math|''R''<sub>n</sub>}} are the resistances of the renal, hepatic, and other arteries respectively. The total resistance is less than the resistance of any of the individual arteries.<ref name="BRS"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)