Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Taylor's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Derivation for the remainder of multivariate Taylor polynomials === We prove the special case, where <math>f:\mathbb R^n\to\mathbb R</math> has continuous partial derivatives up to the order <math>k+1</math> in some closed ball <math>B</math> with center <math>\boldsymbol{a}</math>. The strategy of the proof is to apply the one-variable case of Taylor's theorem to the restriction of <math>f</math> to the line segment adjoining <math>\boldsymbol{x}</math> and <math>\boldsymbol{a}</math>.<ref>{{harvnb|Hörmander|1976|pp=12–13}}</ref> Parametrize the line segment between <math>\boldsymbol{a}</math> and <math>\boldsymbol{x}</math> by <math>\boldsymbol{u}(t)=\boldsymbol{a}+t(\boldsymbol{x}-\boldsymbol{a})</math> We apply the one-variable version of Taylor's theorem to the function <math>g(t) = f(\boldsymbol{u}(t))</math>: <math display="block"> f(\boldsymbol{x})=g(1)=g(0)+\sum_{j=1}^k\frac{1}{j!}g^{(j)}(0)\ +\ \int_0^1 \frac{(1-t)^k }{k!} g^{(k+1)}(t)\, dt.</math> Applying the [[chain rule]] for several variables gives <math display="block">\begin{align} g^{(j)}(t)&=\frac{d^j}{dt^j}f(\boldsymbol{u}(t))\\ &= \frac{d^j}{dt^j} f(\boldsymbol{a}+t(\boldsymbol{x}-\boldsymbol{a}))\\ &= \sum_{|\alpha| =j} \left(\begin{matrix} j\\ \alpha\end{matrix} \right) (D^\alpha f) (\boldsymbol{a}+t(\boldsymbol{x}-\boldsymbol{a})) (\boldsymbol{x}-\boldsymbol{a})^\alpha \end{align}</math> where <math>\tbinom j \alpha</math> is the [[multinomial coefficient]]. Since <math>\tfrac{1}{j!}\tbinom j \alpha=\tfrac{1}{\alpha!}</math>, we get: <math display="block"> f(\boldsymbol{x})= f(\boldsymbol{a}) + \sum_{1 \leq |\alpha| \leq k}\frac{1}{\alpha!} (D^\alpha f) (\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{a})^\alpha+\sum_{|\alpha|=k+1}\frac{k+1}{\alpha!} (\boldsymbol{x}-\boldsymbol{a})^\alpha \int_0^1 (1-t)^k (D^\alpha f)(\boldsymbol{a}+t(\boldsymbol{x}-\boldsymbol{a}))\,dt.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)