Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Harmonic analysis== {{Main article|Fourier transform#Uncertainty principle}} In the context of [[harmonic analysis]] the uncertainty principle implies that one cannot at the same time localize the value of a function and its Fourier transform. To wit, the following inequality holds, <math display="block">\left(\int_{-\infty}^\infty x^2 |f(x)|^2\,dx\right)\left(\int_{-\infty}^\infty \xi^2 |\hat{f}(\xi)|^2\,d\xi\right)\ge \frac{\|f\|_2^4}{16\pi^2}.</math> Further mathematical uncertainty inequalities, including the above [[entropic uncertainty]], hold between a function {{mvar|f}} and its Fourier transform {{math| ƒ̂}}:<ref>{{Citation|first1=V.|last1=Havin|first2= B.|last2=Jöricke|title=The Uncertainty Principle in Harmonic Analysis|publisher=Springer-Verlag|year=1994}}</ref><ref>{{Citation | last1 = Folland | first1 = Gerald | last2 = Sitaram |first2 = Alladi | title = The Uncertainty Principle: A Mathematical Survey | journal = Journal of Fourier Analysis and Applications | date = May 1997 | volume = 3 | issue = 3 | pages = 207–238 | doi = 10.1007/BF02649110 | bibcode = 1997JFAA....3..207F | mr=1448337 | s2cid = 121355943 }}</ref><ref>{{springer|title=Uncertainty principle, mathematical|id=U/u130020|first=A|last=Sitaram|year=2001}}</ref> <math display="block">H_x+H_\xi \ge \log(e/2)</math> ===Signal processing {{anchor|Gabor limit}}=== In the context of [[time–frequency analysis]] uncertainty principles are referred to as the '''Gabor limit''', after [[Dennis Gabor]], or sometimes the ''Heisenberg–Gabor limit''. The basic result, which follows from "Benedicks's theorem", below, is that a function cannot be both [[time limited]] and [[band limited]] (a function and its Fourier transform cannot both have bounded domain)—see [[Bandlimiting#Bandlimited versus timelimited|bandlimited versus timelimited]]. More accurately, the ''time-bandwidth'' or ''duration-bandwidth'' product satisfies <math display="block">\sigma_{t} \sigma_{f} \ge \frac{1}{4\pi} \approx 0.08 \text{ cycles},</math> where <math>\sigma_{t}</math> and <math>\sigma_{f}</math> are the standard deviations of the time and frequency energy concentrations respectively.<ref>{{cite book | last=Mallat | first=S. G. | title=A wavelet tour of signal processing: the sparse way | publisher=Elsevier/Academic Press | publication-place=Amsterdam ; Boston | date=2009 | isbn=978-0-12-374370-1|doi=10.1016/B978-0-12-374370-1.X0001-8|page=44}}</ref> The minimum is attained for a [[Gaussian function|Gaussian]]-shaped pulse ([[Gabor wavelet]]) [For the un-squared Gaussian (i.e. signal amplitude) and its un-squared Fourier transform magnitude <math>\sigma_t\sigma_f=1/2\pi</math>; squaring reduces each <math>\sigma</math> by a factor <math>\sqrt 2</math>.] Another common measure is the product of the time and frequency [[full width at half maximum]] (of the power/energy), which for the Gaussian equals <math>2 \ln 2 / \pi \approx 0.44</math> (see [[bandwidth-limited pulse]]). Stated differently, one cannot simultaneously sharply localize a signal {{mvar|f}} in both the [[time domain]] and [[frequency domain]]. When applied to [[Filter (signal processing)|filters]], the result implies that one cannot simultaneously achieve a high temporal resolution and high frequency resolution at the same time; a concrete example are the [[Short-time Fourier transform#Resolution issues|resolution issues of the short-time Fourier transform]]—if one uses a wide window, one achieves good frequency resolution at the cost of temporal resolution, while a narrow window has the opposite trade-off. Alternate theorems give more precise quantitative results, and, in time–frequency analysis, rather than interpreting the (1-dimensional) time and frequency domains separately, one instead interprets the limit as a lower limit on the support of a function in the (2-dimensional) time–frequency plane. In practice, the Gabor limit limits the ''simultaneous'' time–frequency resolution one can achieve without interference; it is possible to achieve higher resolution, but at the cost of different components of the signal interfering with each other. As a result, in order to analyze signals where the [[Transient (acoustics)|transients]] are important, the [[Wavelet Transform|wavelet transform]] is often used instead of the Fourier. ===Discrete Fourier transform=== Let <math>\left \{ \mathbf{ x_n } \right \} := x_0, x_1, \ldots, x_{N-1}</math> be a sequence of ''N'' complex numbers and <math>\left \{ \mathbf{X_k} \right \} := X_0, X_1, \ldots, X_{N-1},</math> be its [[Discrete Fourier transform#Uncertainty principles | discrete Fourier transform]]. Denote by <math>\|x\|_0</math> the number of non-zero elements in the time sequence <math>x_0,x_1,\ldots,x_{N-1}</math> and by <math>\|X\|_0</math> the number of non-zero elements in the frequency sequence <math>X_0,X_1,\ldots,X_{N-1}</math>. Then, <math display="block">\|x\|_0 \cdot \|X\|_0 \ge N.</math> This inequality is [[inequality (mathematics)#Sharp inequalities|sharp]], with equality achieved when ''x'' or ''X'' is a Dirac mass, or more generally when ''x'' is a nonzero multiple of a Dirac comb supported on a subgroup of the integers modulo ''N'' (in which case ''X'' is also a Dirac comb supported on a complementary subgroup, and vice versa). More generally, if ''T'' and ''W'' are subsets of the integers modulo ''N'', let <math>L_T,R_W : \ell^2(\mathbb Z/N\mathbb Z)\to\ell^2(\mathbb Z/N\mathbb Z)</math> denote the time-limiting operator and [[bandlimiting|band-limiting operator]]s, respectively. Then <math display="block">\|L_TR_W\|^2 \le \frac{|T||W|}{|G|} </math> where the norm is the [[operator norm]] of operators on the Hilbert space <math>\ell^2(\mathbb Z/N\mathbb Z)</math> of functions on the integers modulo ''N''. This inequality has implications for [[signal reconstruction]].<ref name="Donoho">{{cite journal |last1=Donoho |first1=D.L. |last2=Stark |first2=P.B |year=1989 |title=Uncertainty principles and signal recovery |journal=SIAM Journal on Applied Mathematics |volume=49 |issue=3 |pages=906–931 |doi=10.1137/0149053}}</ref> When ''N'' is a [[prime number]], a stronger inequality holds: <math display="block">\|x\|_0 + \|X\|_0 \ge N + 1.</math> Discovered by [[Terence Tao]], this inequality is also sharp.<ref>{{citation| journal=Mathematical Research Letters |volume=12 |year=2005 |issue=1 |title=An uncertainty principle for cyclic groups of prime order |pages=121–127 |author=[[Terence Tao]] |doi=10.4310/MRL.2005.v12.n1.a11 |arxiv=math/0308286 |s2cid=8548232 }}</ref> === Benedicks's theorem === Amrein–Berthier<ref> {{citation | last1 = Amrein | first1 = W.O. | last2 = Berthier | first2 = A.M. | year = 1977 | title = On support properties of ''L''<sup>''p''</sup>-functions and their Fourier transforms | journal = Journal of Functional Analysis | volume = 24 | issue = 3 | pages = 258–267 | doi = 10.1016/0022-1236(77)90056-8 | postscript = . | doi-access = free }}</ref> and Benedicks's theorem<ref>{{citation |first=M. |last=Benedicks |author-link=Michael Benedicks |title=On Fourier transforms of functions supported on sets of finite Lebesgue measure |journal=J. Math. Anal. Appl. |volume=106 |year=1985 |issue=1 |pages=180–183 |doi=10.1016/0022-247X(85)90140-4 |doi-access=free }}</ref> intuitively says that the set of points where {{mvar|f}} is non-zero and the set of points where {{math|ƒ̂}} is non-zero cannot both be small. Specifically, it is impossible for a function {{mvar|f}} in {{math|''L''<sup>2</sup>('''R''')}} and its Fourier transform {{math|ƒ̂}} to both be [[support of a function|supported]] on sets of finite [[Lebesgue measure]]. A more quantitative version is<ref>{{Citation|first=F.|last=Nazarov|author-link=Fedor Nazarov|title=Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type|journal=St. Petersburg Math. J.|volume=5|year=1994|pages=663–717}}</ref><ref>{{Citation|first=Ph.|last=Jaming|title=Nazarov's uncertainty principles in higher dimension|journal= J. Approx. Theory|volume=149|year=2007|issue=1|pages=30–41|doi=10.1016/j.jat.2007.04.005|arxiv=math/0612367|s2cid=9794547}}</ref> <math display="block">\|f\|_{L^2(\mathbf{R}^d)}\leq Ce^{C|S||\Sigma|} \bigl(\|f\|_{L^2(S^c)} + \| \hat{f} \|_{L^2(\Sigma^c)} \bigr) ~.</math> One expects that the factor {{math|''Ce''<sup>''C''{{abs|''S''}}{{abs|''Σ''}}</sup>}} may be replaced by {{math|''Ce''<sup>''C''({{abs|''S''}}{{abs|''Σ''}})<sup>1/''d''</sup></sup>}}, which is only known if either {{mvar|S}} or {{mvar|Σ}} is convex. === Hardy's uncertainty principle === The mathematician [[G. H. Hardy]] formulated the following uncertainty principle:<ref>{{Citation|first=G.H.|last=Hardy|author-link=G. H. Hardy|title=A theorem concerning Fourier transforms|journal=Journal of the London Mathematical Society|volume=8|year=1933|issue=3|pages=227–231|doi=10.1112/jlms/s1-8.3.227}}</ref> it is not possible for {{mvar|f}} and {{math| ƒ̂}} to both be "very rapidly decreasing". Specifically, if {{mvar|f}} in <math>L^2(\mathbb{R})</math> is such that <math display="block">|f(x)|\leq C(1+|x|)^Ne^{-a\pi x^2}</math> and <math display="block">|\hat{f}(\xi)|\leq C(1+|\xi|)^Ne^{-b\pi \xi^2}</math> (<math>C>0,N</math> an integer), then, if {{math|1=''ab'' > 1, ''f'' = 0}}, while if {{math|1=''ab'' = 1}}, then there is a polynomial {{mvar|P}} of degree {{math|≤ ''N''}} such that <math display="block">f(x)=P(x)e^{-a\pi x^2}. </math> This was later improved as follows: if <math>f \in L^2(\mathbb{R}^d)</math> is such that <math display="block">\int_{\mathbb{R}^d}\int_{\mathbb{R}^d}|f(x)||\hat{f}(\xi)|\frac{e^{\pi|\langle x,\xi\rangle|}}{(1+|x|+|\xi|)^N} \, dx \, d\xi < +\infty ~,</math> then <math display="block">f(x)=P(x)e^{-\pi\langle Ax,x\rangle} ~,</math> where {{mvar|P}} is a polynomial of degree {{math|(''N'' − ''d'')/2}} and {{mvar|A}} is a real {{math|''d'' × ''d''}} positive definite matrix. This result was stated in Beurling's complete works without proof and proved in Hörmander<ref>{{Citation | first=L. | last=Hörmander | author-link=Lars Hörmander|title=A uniqueness theorem of Beurling for Fourier transform pairs|journal= Ark. Mat. | volume=29|issue=1–2|year=1991|pages=231–240|bibcode=1991ArM....29..237H|doi=10.1007/BF02384339|s2cid=121375111 | doi-access=free}}</ref> (the case <math>d=1,N=0</math>) and Bonami, Demange, and Jaming<ref>{{Citation | first1=A. | last1=Bonami | author1-link= Aline Bonami |first2=B.|last2=Demange|first3=Ph.|last3=Jaming|title=Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms |journal= Rev. Mat. Iberoamericana | volume=19 | year=2003 | pages=23–55 | bibcode=2001math......2111B|arxiv=math/0102111| doi=10.4171/RMI/337|s2cid=1211391}}</ref> for the general case. Note that Hörmander–Beurling's version implies the case {{math|''ab'' > 1}} in Hardy's Theorem while the version by Bonami–Demange–Jaming covers the full strength of Hardy's Theorem. A different proof of Beurling's theorem based on Liouville's theorem appeared in ref.<ref>{{Citation|first=Haakan|last=Hedenmalm|title=Heisenberg's uncertainty principle in the sense of Beurling|journal=[[Journal d'Analyse Mathématique]] | volume=118 | issue=2 | year=2012 | pages=691–702 | doi=10.1007/s11854-012-0048-9 | doi-access=free | arxiv=1203.5222 | bibcode=2012arXiv1203.5222H | s2cid=54533890}}</ref> A full description of the case {{math|''ab'' < 1}} as well as the following extension to Schwartz class distributions appears in ref.<ref>{{Citation|first=Bruno|last=Demange|title=Uncertainty Principles Associated to Non-degenerate Quadratic Forms|year=2009|publisher= Société Mathématique de France|isbn=978-2-85629-297-6}}</ref> {{math theorem| If a tempered distribution <math>f\in\mathcal{S}'(\R^d)</math> is such that <math display="block">e^{\pi|x|^2}f\in\mathcal{S} '(\R^d)</math> and <math display="block">e^{\pi|\xi|^2}\hat f\in\mathcal{S}'(\R^d) ~,</math> then <math display="block">f(x)=P(x)e^{-\pi\langle Ax,x\rangle} ~,</math> for some convenient polynomial {{mvar|P}} and real positive definite matrix {{mvar|A}} of type {{math|''d'' × ''d''}}.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)