Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ackermann function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Bibliography== {{Refbegin}} *{{cite journal |last= Ackermann |first= Wilhelm |author-link= Wilhelm Ackermann |journal= [[Mathematische Annalen]] |title= Zum Hilbertschen Aufbau der reellen Zahlen |language=de |trans-title=On the Hilbertian construction of the real numbers |year= 1928 |volume= 99 |pages= 118–133 |url= http://gdz.sub.uni-goettingen.de/en/dms/loader/img/?PPN=PPN235181684_0099&DMDID=DMDLOG_0009 |doi= 10.1007/BF01459088 |s2cid= 123431274 }} *{{cite journal |last= Buck |first= R. C. |author-link= Robert Creighton Buck |title= Mathematical Induction and Recursive Definitions |journal= [[American Mathematical Monthly]] |year= 1963 |volume= 70 |issue= 2 |pages= 128–135 |doi= 10.2307/2312881 |jstor= 2312881 |doi-access= }} *{{cite journal |last1= Calude |first1= Cristian |author-link1= Cristian S. Calude |last2= Marcus |first2= Solomon |author-link2= Solomon Marcus |last3= Tevy |first3= Ionel |journal= Historia Math. |title= The first example of a recursive function which is not primitive recursive |date= November 1979 |pages= 380–84 |volume= 6 |issue= 4 |doi= 10.1016/0315-0860(79)90024-7 |doi-access= free }} *{{cite book |last= Cohen |first= Daniel E. |title= Computability and logic |publisher= Halsted Press |date= January 1987 |isbn=9780745800349 }} *{{cite journal |last1= Cornelius |first1= B. J. |last2= Kirby |first2= G. H. |journal = [[BIT Numerical Mathematics]] |title= Depth of recursion and the Ackermann function |year= 1975 |pages= 144–150 |volume= 15 |issue= 2 |doi= 10.1007/BF01932687 |s2cid= 120532578 }} *{{cite conference |last1= Czerwiński |first1= Wojciech |last2= Orlikowski |first2= Łukasz |title= Reachability in Vector Addition Systems is Ackermann-complete |conference= Proceedings of the 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science |date= 7 February 2022 |url= https://ieeexplore.ieee.org/document/9719806 |doi= 10.1109/FOCS52979.2021.00120 |arxiv= 2104.13866 }} *{{cite book|first1=M.|last1=Fredman|author-link=Michael Fredman|first2=M.|last2=Saks|title=Proceedings of the twenty-first annual ACM symposium on Theory of computing – STOC '89 |chapter=The cell probe complexity of dynamic data structures |pages=345–354|date=May 1989|doi=10.1145/73007.73040|isbn=0897913078|s2cid=13470414|doi-access=free}} *{{cite journal |last1= Grossman |first1= Jerrold W. |last2= Zeitman |first2= R. Suzanne |journal = [[Theoretical Computer Science]] |title= An inherently iterative computation of ackermann's function |date= May 1988 |pages= 327–330 |volume= 57 |issue= 2–3 |doi= 10.1016/0304-3975(88)90046-1 |doi-access= }} *{{cite book |last= van Heijenoort |first= Jean |title= From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 |publisher= Harvard University Press |orig-year= reprinted with corrections, first published in 1967 |year= 1977 }} *{{cite journal |last= Hilbert |first= David |author-link= David Hilbert |journal= [[Mathematische Annalen]] |title= Über das Unendliche |language=de |trans-title=On the infinite |year= 1926 |volume= 95 |pages= 161–190 |doi= 10.1007/BF01206605 |s2cid= 121888793 }} *{{cite conference |last= Leroux |first= Jérôme |title= The Reachability Problem for Petri Nets is Not Primitive Recursive |conference= Proceedings of the 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science |date= 7 February 2022 |url= https://ieeexplore.ieee.org/document/9719763 |doi= 10.1109/FOCS52979.2021.00121 |arxiv= 2104.12695 }} *{{cite web |last= Matos |first= Armando B |title= The inverse of the Ackermann function is primitive recursive |date= May 7, 2014 |url= http://www.dcc.fc.up.pt/~acm/PRinv.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.dcc.fc.up.pt/~acm/PRinv.pdf |archive-date=2022-10-09 |url-status=live }} *{{cite report |last1= Meeussen |first1= V. C. S. |last2= Zantema |first2= H. |title= Derivation lengths in term rewriting from interpretations in the naturals |publisher= University of Utrecht Department of Computer Science |url= https://research.tue.nl/files/4245011/398270.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://research.tue.nl/files/4245011/398270.pdf |archive-date=2022-10-09 |url-status=live |year= 1992 |issn= 0924-3275 }} *{{cite conference |last1= Meyer |first1= Albert R. |author-link1= Albert R. Meyer |last2= Ritchie |first2= Dennis MacAlistair |title= Proceedings of the 1967 22nd national conference |author-link2= Dennis Ritchie |chapter= The complexity of loop programs |conference= ACM '67: Proceedings of the 1967 22nd national conference |year= 1967 |pages= 465–469 |doi= 10.1145/800196.806014 |doi-access= free }} *{{cite book |last1= Monin |first1= Jean-Francois |last2= Hinchey |first2= M. G. |title= Understanding Formal Methods |publisher= Springer |year= 2003 |isbn= 9781852332471 |page= 61 |url= https://books.google.com/books?id=rUudIPZD-B0C&pg=PA61 }} *{{cite web |last= Munafo |first= Robert |title= Versions of Ackermann's Function |url= http://www.mrob.com/pub/math/ln-2deep.html#ack |work= Large Numbers at MROB |date= 1999a |access-date= 2021-11-06 }} *{{cite web |last= Munafo |first= Robert |title= Inventing New Operators and Functions |url= http://www.mrob.com/pub/math/largenum-3.html |work= Large Numbers at MROB |date= 1999b |access-date= 2021-11-06 }} *{{cite web |last= Paulson |first= Lawrence C. |title= Ackermann's Function in Iterative Form: A Proof Assistant Experiment |url= https://www.researchgate.net/publication/351063906 |date= 2021 |access-date= 2021-10-19 }} *{{cite journal |last= Péter |first= Rózsa |author-link= Rózsa Péter |journal= [[Mathematische Annalen]] |title= Konstruktion nichtrekursiver Funktionen |language=de |trans-title=Construction of non-recursive functions |year= 1935 |volume= 111 |pages= 42–60 |doi= 10.1007/BF01472200 |s2cid= 121107217 }} *{{cite book |last= Pettie |first= S. |title= The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings. |chapter= An inverse-Ackermann style lower bound for the online minimum spanning tree verification problem |year= 2002 |pages= 155–163 |doi= 10.1109/SFCS.2002.1181892 |isbn= 0-7695-1822-2 |s2cid= 8636108 }} *{{cite journal |last1= Porto |first1= António |last2= Matos |first2= Armando B. |title= Ackermann and the superpowers |journal= [[ACM SIGACT|ACM SIGACT News]] |date= 1 September 1980 |volume= 12 |issue= 3 |pages= 90–95 |url= https://www.dcc.fc.up.pt/~acm/ack.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.dcc.fc.up.pt/~acm/ack.pdf |archive-date=2022-10-09 |url-status=live |doi= 10.1145/1008861.1008872 |s2cid= 29780652 }} Original version 1980, published in ''ACM SIGACT News'', modified on 20 October 2012 and 23 January 2016 (working paper) *{{cite journal |last= Ritchie |first= Robert Wells |title= Classes of recursive functions based on Ackermann's function |journal= [[Pacific Journal of Mathematics]] |date= November 1965 |volume= 15 |issue= 3 |pages= 1027–1044 |url= https://msp.org/pjm/1965/15-3/p25.xhtml |doi= 10.2140/pjm.1965.15.1027 |doi-access= free }} *{{cite journal |last= Robinson |first= Raphael Mitchel |author-link= Raphael M. Robinson |title= Recursion and Double Recursion |journal= [[Bulletin of the American Mathematical Society]] |year= 1948 |volume= 54 |pages= 987–93 |url= http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183512393&page=record |doi= 10.1090/S0002-9904-1948-09121-2 |issue= 10 |doi-access= free }} *{{cite journal |last= Sundblad |first= Yngve |date= March 1971 |title= The Ackermann function. A theoretical, computational, and formula manipulative study |journal= BIT Numerical Mathematics |volume= 11 |issue= 1 |pages= 107–119 |doi= 10.1007/BF01935330 |s2cid= 123416408 }} *{{cite journal|last1=Tarjan|first1=Robert Endre|author1-link=Robert E. Tarjan|year=1975|title=Efficiency of a Good But Not Linear Set Union Algorithm|journal=Journal of the ACM|volume=22|issue=2|pages=215–225|doi=10.1145/321879.321884|hdl=1813/5942|s2cid=11105749|hdl-access=free }} *{{cite journal |last= Vaida |first= Dragoș |date= 1970 |title= Compiler Validation for an Algol-like Language |journal= Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie |series= Nouvelle série |volume= 14 (62) |issue= 4 |pages= 487–502 |jstor= 43679758 }} *{{citation|mode=cs1 |last= Ward |first= Martin P. |date= 16 July 1993 |title= Iterative Procedures for Computing Ackerman's Function |citeseerx= 10.1.1.35.9907 }} *{{cite journal |last= Wichmann |first= Brian A. |date= March 1976 |title= Ackermann's function: A study in the efficiency of calling procedures |journal= BIT Numerical Mathematics |volume= 16 |pages= 103–110 |doi= 10.1007/BF01940783 |s2cid= 16993343 |citeseerx= 10.1.1.108.4125 }} *{{cite journal |last= Wichmann |first= Brian A. |date= July 1977 |title= How to call procedures, or second thoughts on Ackermann's function |journal= BIT Numerical Mathematics |volume= 16 |issue= 3 |pages= 103–110 |doi= 10.1002/spe.4380070303 |s2cid= 206507320 }} *{{cite web |last= Wichmann |first= Brian A. |date= July 1982 |title= Latest results from the procedure calling test, Ackermann's function |url= http://history.dcs.ed.ac.uk/archive/docs/Imp_Benchmarks/acklt.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://history.dcs.ed.ac.uk/archive/docs/Imp_Benchmarks/acklt.pdf |archive-date=2022-10-09 |url-status=live}} {{Refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)