Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Artificial intelligence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Health and medicine=== {{Main|Artificial intelligence in healthcare}} The application of AI in [[medicine]] and [[medical research]] has the potential to increase patient care and quality of life.<ref>{{Cite journal |last1=Davenport |first1=T |last2=Kalakota |first2=R |date=June 2019 |title=The potential for artificial intelligence in healthcare |journal=Future Healthc J. |volume=6 |issue=2 |pages=94β98 |doi=10.7861/futurehosp.6-2-94 |pmc=6616181 |pmid=31363513}}</ref> Through the lens of the [[Hippocratic Oath]], medical professionals are ethically compelled to use AI, if applications can more accurately diagnose and treat patients.<ref>{{Cite journal |last1=Lyakhova |first1=U.A. |last2=Lyakhov |first2=P.A. |date=2024 |title=Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects |url=https://linkinghub.elsevier.com/retrieve/pii/S0010482524008278 |journal=Computers in Biology and Medicine |language=en |volume=178 |pages=108742 |doi=10.1016/j.compbiomed.2024.108742 |pmid=38875908 |archive-date=3 December 2024 |access-date=10 October 2024 |archive-url=https://web.archive.org/web/20241203172502/https://linkinghub.elsevier.com/retrieve/pii/S0010482524008278 |url-status=live }}</ref><ref>{{Cite journal |last1=Alqudaihi |first1=Kawther S. |last2=Aslam |first2=Nida |last3=Khan |first3=Irfan Ullah |last4=Almuhaideb |first4=Abdullah M. |last5=Alsunaidi |first5=Shikah J. |last6=Ibrahim |first6=Nehad M. Abdel Rahman |last7=Alhaidari |first7=Fahd A. |last8=Shaikh |first8=Fatema S. |last9=Alsenbel |first9=Yasmine M. |last10=Alalharith |first10=Dima M. |last11=Alharthi |first11=Hajar M. |last12=Alghamdi |first12=Wejdan M. |last13=Alshahrani |first13=Mohammed S. |date=2021 |title=Cough Sound Detection and Diagnosis Using Artificial Intelligence Techniques: Challenges and Opportunities |journal=IEEE Access |volume=9 |pages=102327β102344 |doi=10.1109/ACCESS.2021.3097559 |issn=2169-3536 |pmc=8545201 |pmid=34786317|bibcode=2021IEEEA...9j2327A }}</ref> For medical research, AI is an important tool for processing and integrating [[big data]]. This is particularly important for [[organoid]] and [[tissue engineering]] development which use [[microscopy]] imaging as a key technique in fabrication.<ref name="Bax-2023">{{Cite journal |last1=Bax |first1=Monique |last2=Thorpe |first2=Jordan |last3=Romanov |first3=Valentin |date=December 2023 |title=The future of personalized cardiovascular medicine demands 3D and 4D printing, stem cells, and artificial intelligence |journal=Frontiers in Sensors |volume=4 |doi=10.3389/fsens.2023.1294721 |issn=2673-5067 |doi-access=free}}</ref> It has been suggested that AI can overcome discrepancies in funding allocated to different fields of research.<ref name="Bax-2023"/><ref>{{Cite journal |last=Dankwa-Mullan |first=Irene |date=2024 |title=Health Equity and Ethical Considerations in Using Artificial Intelligence in Public Health and Medicine |url=https://www.cdc.gov/pcd/issues/2024/24_0245.htm |journal=Preventing Chronic Disease |language=en-us |volume=21 |pages=E64 |doi=10.5888/pcd21.240245 |pmid=39173183 |issn=1545-1151|pmc=11364282 }}</ref> New AI tools can deepen the understanding of biomedically relevant pathways. For example, [[AlphaFold 2]] (2021) demonstrated the ability to approximate, in hours rather than months, the 3D [[Protein structure|structure of a protein]].<ref>{{Cite journal |last1=Jumper |first1=J |last2=Evans |first2=R |last3=Pritzel |first3=A |date=2021 |title=Highly accurate protein structure prediction with AlphaFold |journal=Nature |volume=596 |issue=7873 |pages=583β589 |bibcode=2021Natur.596..583J |doi=10.1038/s41586-021-03819-2 |pmc=8371605 |pmid=34265844}}</ref> In 2023, it was reported that AI-guided drug discovery helped find a class of antibiotics capable of killing two different types of drug-resistant bacteria.<ref>{{Cite web |date=2023-12-20 |title=AI discovers new class of antibiotics to kill drug-resistant bacteria |url=https://www.newscientist.com/article/2409706-ai-discovers-new-class-of-antibiotics-to-kill-drug-resistant-bacteria/ |access-date=5 October 2024 |archive-date=16 September 2024 |archive-url=https://web.archive.org/web/20240916014421/https://www.newscientist.com/article/2409706-ai-discovers-new-class-of-antibiotics-to-kill-drug-resistant-bacteria/ |url-status=live }}</ref> In 2024, researchers used machine learning to accelerate the search for [[Parkinson's disease]] drug treatments. Their aim was to identify compounds that block the clumping, or aggregation, of [[alpha-synuclein]] (the protein that characterises Parkinson's disease). They were able to speed up the initial screening process ten-fold and reduce the cost by a thousand-fold.<ref>{{Cite web |date=2024-04-17 |title=AI speeds up drug design for Parkinson's ten-fold |url=https://www.cam.ac.uk/research/news/ai-speeds-up-drug-design-for-parkinsons-ten-fold |publisher=Cambridge University |access-date=5 October 2024 |archive-date=5 October 2024 |archive-url=https://web.archive.org/web/20241005165755/https://www.cam.ac.uk/research/news/ai-speeds-up-drug-design-for-parkinsons-ten-fold |url-status=live }}</ref><ref>{{Cite journal |last1=Horne |first1=Robert I. |last2=Andrzejewska |first2=Ewa A. |last3=Alam |first3=Parvez |last4=Brotzakis |first4=Z. Faidon |last5=Srivastava |first5=Ankit |last6=Aubert |first6=Alice |last7=Nowinska |first7=Magdalena |last8=Gregory |first8=Rebecca C. |last9=Staats |first9=Roxine |last10=Possenti |first10=Andrea |last11=Chia |first11=Sean |last12=Sormanni |first12=Pietro |last13=Ghetti |first13=Bernardino |last14=Caughey |first14=Byron |last15=Knowles |first15=Tuomas P. J. |last16=Vendruscolo |first16=Michele |date=2024-04-17 |title=Discovery of potent inhibitors of Ξ±-synuclein aggregation using structure-based iterative learning |journal=Nature Chemical Biology |publisher=Nature |volume=20 |issue=5 |pages=634β645 |doi=10.1038/s41589-024-01580-x |pmc=11062903 |pmid=38632492}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)