Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== ===General=== *<math>\operatorname{Cauchy}(0,1) \sim \textrm{t}(\mathrm{df}=1)\,</math> [[Student's t distribution|Student's ''t'' distribution]] *<math>\operatorname{Cauchy}(\mu,\sigma) \sim \textrm{t}_{(\mathrm{df}=1)}(\mu,\sigma)\,</math> [[Student's t distribution#location-scale|non-standardized Student's ''t'' distribution]] *If <math>X, Y \sim \textrm{N}(0,1)\, X, Y</math> independent, then <math> \tfrac X Y\sim \textrm{Cauchy}(0,1)\,</math> *If <math>X \sim \textrm{U}(0,1)\,</math> then <math> \tan \left( \pi \left(X-\tfrac{1}{2}\right) \right) \sim \textrm{Cauchy}(0,1)\,</math> *If <math>X \sim \operatorname{Log-Cauchy}(0, 1)</math> then <math>\ln(X) \sim \textrm{Cauchy}(0, 1)</math> *If <math>X \sim \operatorname{Cauchy}(x_0,\gamma)</math> then <math>\tfrac1X \sim \operatorname{Cauchy}\left(\tfrac{x_0}{x_0^2+\gamma^2},\tfrac{\gamma}{x_0^2+\gamma^2}\right)</math> *The Cauchy distribution is a limiting case of a [[Pearson distribution]] of type 4{{Citation needed|date=March 2011}} *The Cauchy distribution is a special case of a [[Pearson distribution]] of type 7.<ref name=jkb1/> *The Cauchy distribution is a [[stable distribution]]: if <math>X \sim \textrm{Stable}(1, 0, \gamma, \mu)</math>, then <math>X \sim \operatorname{Cauchy}(\mu, \gamma)</math>. *The Cauchy distribution is a singular limit of a [[hyperbolic distribution]]{{Citation needed|date=April 2011}} *The [[wrapped Cauchy distribution]], taking values on a circle, is derived from the Cauchy distribution by wrapping it around the circle. *If <math>X \sim \textrm{N}(0,1)</math>, <math>Z \sim \operatorname{Inverse-Gamma}(1/2, s^2/2)</math>, then <math>Y = \mu + X \sqrt Z \sim \operatorname{Cauchy}(\mu,s)</math>. For half-Cauchy distributions, the relation holds by setting <math>X \sim \textrm{N}(0,1) I\{X\ge0\}</math>. === Lévy measure === The Cauchy distribution is the [[stable distribution]] of index 1. The [[Lévy process#L.C3.A9vy.E2.80.93Khintchine representation|Lévy–Khintchine representation]] of such a stable distribution of parameter <math> \gamma </math> is given, for <math> X \sim \operatorname{Stable}(\gamma, 0, 0)\,</math> by: <math display="block">\operatorname{E}\left( e^{ixX} \right) = \exp\left( \int_{ \mathbb{R} } (e^{ixy} - 1) \Pi_\gamma(dy) \right)</math> where <math display="block">\Pi_\gamma(dy) = \left( c_{1, \gamma} \frac{1}{y^{1 + \gamma}} 1_{ \left\{y > 0\right\} } + c_{2,\gamma} \frac{1}{|y|^{1 + \gamma}} 1_{\left\{ y < 0 \right\}} \right) \, dy </math> and <math> c_{1, \gamma}, c_{2, \gamma} </math> can be expressed explicitly.<ref>{{cite book |author=Kyprianou, Andreas |year=2009 |title=Lévy processes and continuous-state branching processes:part I |page=11 |url=http://www.maths.bath.ac.uk/~ak257/LCSB/part1.pdf |access-date=2016-05-04 |archive-date=2016-03-03 |archive-url=https://web.archive.org/web/20160303235654/http://www.maths.bath.ac.uk/~ak257/LCSB/part1.pdf |url-status=live }}</ref> In the case <math> \gamma = 1 </math> of the Cauchy distribution, one has <math> c_{1, \gamma} = c_{2, \gamma} </math>. This last representation is a consequence of the formula <math display="block">\pi |x| = \operatorname{PV }\int_{\mathbb{R} \smallsetminus\lbrace 0 \rbrace} (1 - e^{ixy}) \, \frac{dy}{y^2} </math> ===Multivariate Cauchy distribution=== A [[random vector]] <math>X=(X_1, \ldots, X_k)^T</math> is said to have the multivariate Cauchy distribution if every linear combination of its components <math>Y=a_1X_1+ \cdots + a_kX_k</math> has a Cauchy distribution. That is, for any constant vector <math>a\in \mathbb R^k</math>, the random variable <math>Y=a^TX</math> should have a univariate Cauchy distribution.<ref name=ferg2>{{cite journal|last1=Ferguson|first1=Thomas S.|title=A Representation of the Symmetric Bivariate Cauchy Distribution|journal=The Annals of Mathematical Statistics |volume= 33|issue= 4|pages=1256–1266|year=1962 |jstor=2237984|doi=10.1214/aoms/1177704357|url=http://projecteuclid.org/download/pdf_1/euclid.aoms/1177704357|access-date=2017-01-07 |doi-access=free}}</ref> The characteristic function of a multivariate Cauchy distribution is given by: <math display="block">\varphi_X(t) = e^{ix_0(t)-\gamma(t)}, \!</math> where <math>x_0(t)</math> and <math>\gamma(t)</math> are real functions with <math>x_0(t)</math> a [[homogeneous function]] of degree one and <math>\gamma(t)</math> a positive homogeneous function of degree one.<ref name=ferg2/> More formally:<ref name=ferg2/> <math display="block">\begin{align} x_0(at) &= a x_0(t), \\ \gamma (at) &= |a| \gamma (t), \end{align}</math> for all <math>t</math>. An example of a bivariate Cauchy distribution can be given by:<ref name=bivar>{{cite journal|title=Non-linear Integral Equations to Approximate Bivariate Densities with Given Marginals and Dependence Function|last1=Molenberghs|first1=Geert|last2=Lesaffre|first2=Emmanuel|journal=Statistica Sinica|volume=7|year=1997|pages=713–738|url=http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n310.pdf|url-status=dead|archive-url=https://web.archive.org/web/20090914055538/http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n310.pdf|archive-date=2009-09-14}}</ref> <math display="block">f(x, y; x_0,y_0,\gamma) = \frac{1}{2 \pi} \, \frac{\gamma}{{\left({\left(x - x_0\right)}^2 + {\left(y - y_0\right)}^2 + \gamma^2\right)}^{3/2}} .</math> Note that in this example, even though the covariance between <math>x</math> and <math>y</math> is 0, <math>x</math> and <math>y</math> are not [[Independence (probability theory)|statistically independent]].<ref name=bivar/> We also can write this formula for complex variable. Then the probability density function of complex Cauchy is : <math display="block">f(z; z_0,\gamma) = \frac{1}{2\pi} \,\frac{\gamma}{{\left({\left|z - z_0\right|}^2 + \gamma^2\right)}^{3/2} } .</math> Like how the standard Cauchy distribution is the Student t-distribution with one degree of freedom, the multidimensional Cauchy density is the [[multivariate Student distribution]] with one degree of freedom. The density of a <math>k</math> dimension Student distribution with one degree of freedom is: <math display="block">f(\mathbf{x}; \boldsymbol{\mu},\mathbf{\Sigma}, k)= \frac{\Gamma{\left(\frac{1+k}{2}\right)}}{\Gamma(\frac{1}{2}) \pi^{\frac{k}{2}} \left|\mathbf{\Sigma}\right|^{\frac{1}{2}} \left[1 + ({\mathbf x}-{\boldsymbol\mu})^\mathsf{T} {\mathbf\Sigma}^{-1} ({\mathbf x}-{\boldsymbol\mu})\right]^{\frac{1+k}{2}}} .</math> The properties of multidimensional Cauchy distribution are then special cases of the multivariate Student distribution.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)