Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Determinant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Trace === The [[Trace (linear algebra)|trace]] tr(''A'') is by definition the sum of the diagonal entries of {{mvar|A}} and also equals the sum of the eigenvalues. Thus, for complex matrices {{mvar|A}}, :<math>\det(\exp(A)) = \exp(\operatorname{tr}(A))</math> or, for real matrices {{mvar|A}}, :<math>\operatorname{tr}(A) = \log(\det(\exp(A))).</math> Here exp({{mvar|A}}) denotes the [[matrix exponential]] of {{mvar|A}}, because every eigenvalue {{mvar|λ}} of {{mvar|A}} corresponds to the eigenvalue exp({{mvar|λ}}) of exp({{mvar|A}}). In particular, given any [[matrix logarithm|logarithm]] of {{mvar|A}}, that is, any matrix {{mvar|L}} satisfying :<math>\exp(L) = A</math> the determinant of {{mvar|A}} is given by :<math>\det(A) = \exp(\operatorname{tr}(L)).</math> For example, for {{math|1=''n'' = 2}}, {{math|1=''n'' = 3}}, and {{math|1=''n'' = 4}}, respectively, :<math>\begin{align} \det(A) &= \frac{1}{2}\left(\left(\operatorname{tr}(A)\right)^2 - \operatorname{tr}\left(A^2\right)\right), \\ \det(A) &= \frac{1}{6}\left(\left(\operatorname{tr}(A)\right)^3 - 3\operatorname{tr}(A) ~ \operatorname{tr}\left(A^2\right) + 2 \operatorname{tr}\left(A^3\right)\right), \\ \det(A) &= \frac{1}{24}\left(\left(\operatorname{tr}(A)\right)^4 - 6\operatorname{tr}\left(A^2\right)\left(\operatorname{tr}(A)\right)^2 + 3\left(\operatorname{tr}\left(A^2\right)\right)^2 + 8\operatorname{tr}\left(A^3\right)~\operatorname{tr}(A) - 6\operatorname{tr}\left(A^4\right)\right). \end{align}</math> cf. [[Cayley–Hamilton theorem#Illustration for specific dimensions and practical applications|Cayley-Hamilton theorem]]. Such expressions are deducible from combinatorial arguments, [[Newton's identities#Computing coefficients|Newton's identities]], or the [[Faddeev–LeVerrier algorithm]]. That is, for generic {{mvar|n}}, {{math|det''A'' {{=}} (−1)<sup>''n''</sup>''c''<sub>0</sub>}} the signed constant term of the [[characteristic polynomial]], determined recursively from :<math>c_n = 1; ~~~c_{n-m} = -\frac{1}{m}\sum_{k=1}^m c_{n-m+k} \operatorname{tr}\left(A^k\right) ~~(1 \le m \le n)~.</math> In the general case, this may also be obtained from<ref>A proof can be found in the Appendix B of {{cite journal | last1 = Kondratyuk | first1 = L. A. | last2 = Krivoruchenko | first2 = M. I. | year = 1992 | title = Superconducting quark matter in SU(2) color group | journal = Zeitschrift für Physik A | volume = 344 | issue = 1| pages = 99–115 | doi = 10.1007/BF01291027 | bibcode = 1992ZPhyA.344...99K | s2cid = 120467300 }}</ref> :<math>\det(A) = \sum_{\begin{array}{c}k_1,k_2,\ldots,k_n \geq 0\\k_1+2k_2+\cdots+nk_n=n\end{array}}\prod_{l=1}^n \frac{(-1)^{k_l+1}}{l^{k_l}k_l!} \operatorname{tr}\left(A^l\right)^{k_l},</math> where the sum is taken over the set of all integers {{math|''k<sub>l</sub>'' ≥ 0}} satisfying the equation :<math>\sum_{l=1}^n lk_l = n.</math> The formula can be expressed in terms of the complete exponential [[Bell polynomial]] of ''n'' arguments ''s''<sub>''l''</sub> = −(''l'' – 1)! tr(''A''<sup>''l''</sup>) as :<math>\det(A) = \frac{(-1)^n}{n!} B_n(s_1, s_2, \ldots, s_n).</math> This formula can also be used to find the determinant of a matrix {{math|''A<sup>I</sup><sub>J</sub>''}} with multidimensional indices {{math|1=''I'' = (''i''<sub>1</sub>, ''i''<sub>2</sub>, ..., ''i<sub>r</sub>'')}} and {{math|1=''J'' = (''j''<sub>1</sub>, ''j''<sub>2</sub>, ..., ''j<sub>r</sub>'')}}. The product and trace of such matrices are defined in a natural way as :<math>(AB)^I_J = \sum_K A^I_K B^K_J, \operatorname{tr}(A) = \sum_I A^I_I.</math> An important arbitrary dimension {{mvar|n}} identity can be obtained from the [[Mercator series]] expansion of the logarithm when the expansion converges. If every eigenvalue of ''A'' is less than 1 in absolute value, :<math>\det(I + A) = \sum_{k=0}^\infty \frac{1}{k!} \left(-\sum_{j=1}^\infty \frac{(-1)^j}{j} \operatorname{tr}\left(A^j\right)\right)^k\,,</math> where {{math|''I''}} is the identity matrix. More generally, if :<math>\sum_{k=0}^\infty \frac{1}{k!} \left(-\sum_{j=1}^\infty \frac{(-1)^j s^j}{j}\operatorname{tr}\left(A^j\right)\right)^k\,,</math> is expanded as a formal [[power series]] in {{mvar|s}} then all coefficients of {{mvar|s}}<sup>{{mvar|m}}</sup> for {{math|''m'' > ''n''}} are zero and the remaining polynomial is {{math|det(''I'' + ''sA'')}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)