Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Embryonic stem cell
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Induced pluripotent stem cells=== {{main|Induced pluripotent stem cell}} The iPS cell technology was pioneered by [[Shinya Yamanaka]]'s lab in [[Kyoto]], [[Japan]], who showed in 2006 that the introduction of four specific genes encoding [[transcription factors]] could convert adult cells into pluripotent stem cells.<ref name="ReferenceA">{{cite journal | last1 = Takahashi | first1 = K | last2 = Yamanaka | first2 = S | title = Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors | journal = Cell | volume = 126 | issue = 4 | pages = 663β676 | year = 2006 | pmid = 16904174 | doi = 10.1016/j.cell.2006.07.024 | hdl = 2433/159777 | s2cid = 1565219 | hdl-access = free }}{{open access}}</ref> He was awarded the 2012 Nobel Prize along with Sir [[John Gurdon]] "for the discovery that mature cells can be reprogrammed to become pluripotent."<ref>{{cite web|url=https://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/press.html|publisher=Nobel Media AB|date=8 October 2012|title=The Nobel Prize in Physiology or Medicine β 2012 Press Release|access-date=3 July 2017|archive-date=4 April 2023|archive-url=https://web.archive.org/web/20230404202940/http://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/press.html|url-status=live}}</ref> In 2007, it was shown that [[pluripotency|pluripotent]] [[stem cell]]s, highly similar to embryonic stem cells, can be induced by the delivery of four factors (''Oct3/4'', ''Sox2'', c-Myc, and ''Klf4'') to differentiated cells.<ref>{{cite journal| doi = 10.1038/nature05944| issn = 1476-4687| volume = 448| issue = 7151| pages = 318β324| last1 = Wernig| first1 = Marius| last2 = Meissner| first2 = Alexander| last3 = Foreman| first3 = Ruth| last4 = Brambrink| first4 = Tobias| last5 = Ku| first5 = Manching| last6 = Hochedlinger| first6 = Konrad| last7 = Bernstein| first7 = Bradley E.| last8 = Jaenisch| first8 = Rudolf| title = In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state| journal = Nature| date = 2007-07-19| pmid = 17554336| bibcode = 2007Natur.448..318W| s2cid = 4377572}}</ref> Utilizing the four genes previously listed, the differentiated cells are "reprogrammed" into pluripotent stem cells, allowing for the generation of pluripotent/embryonic stem cells without the embryo. The morphology and growth factors of these lab induced pluripotent cells, are equivalent to embryonic stem cells, leading these cells to be known as [[induced pluripotent stem cell]]s (iPS cells).<ref>{{Cite journal |last1=Takahashi |first1=Kazutoshi |last2=Yamanaka |first2=Shinya |date=2006-08-25 |title=Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors |journal=Cell |language=English |volume=126 |issue=4 |pages=663β676 |doi=10.1016/j.cell.2006.07.024 |issn=0092-8674 |pmid=16904174|s2cid=1565219 |doi-access=free |hdl=2433/159777 |hdl-access=free }}</ref> This observation was observed in mouse pluripotent stem cells, originally, but now can be performed in human adult [[fibroblast]]s using the same four genes. <ref>{{Cite journal |last1=Takahashi |first1=Kazutoshi |last2=Tanabe |first2=Koji |last3=Ohnuki |first3=Mari |last4=Narita |first4=Megumi |last5=Ichisaka |first5=Tomoko |last6=Tomoda |first6=Kiichiro |last7=Yamanaka |first7=Shinya |date=2007-11-30 |title=Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors |journal=Cell |language=English |volume=131 |issue=5 |pages=861β872 |doi=10.1016/j.cell.2007.11.019 |issn=0092-8674 |pmid=18035408 |s2cid=8531539|doi-access=free |hdl=2433/49782 |hdl-access=free }}</ref> Because ethical concerns regarding embryonic stem cells typically are about their derivation from terminated embryos, it is believed that reprogramming to these iPS cells may be less controversial. This may enable the generation of patient specific ES cell lines that could potentially be used for cell replacement therapies. In addition, this will allow the generation of ES cell lines from patients with a variety of genetic diseases and will provide invaluable models to study those diseases. However, as a first indication that the iPS cell technology can in rapid succession lead to new cures, it was used by a research team headed by [[Rudolf Jaenisch]] of the [[Whitehead Institute for Biomedical Research]] in [[Cambridge, Massachusetts|Cambridge]], [[Massachusetts]], to cure mice of [[sickle cell anemia]], as reported by [[Science (journal)|''Science'' journal's]] online edition on December 6, 2007.<ref>{{cite news | url=https://www.washingtonpost.com/wp-dyn/content/article/2007/12/06/AR2007120602444.html | title=Scientists Cure Mice Of Sickle Cell Using Stem Cell Technique: New Approach Is From Skin, Not Embryos | author=Weiss, Rick | newspaper=[[The Washington Post]] | date=2007-12-07 | pages=A02 | access-date=2017-08-31 | archive-date=2018-12-25 | archive-url=https://web.archive.org/web/20181225160628/http://www.washingtonpost.com/wp-dyn/content/article/2007/12/06/AR2007120602444.html | url-status=live }}</ref><ref>{{cite journal|doi=10.1126/science.1152092|pmid=18063756|title=Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin|journal=Science|volume=318|issue=5858|pages=1920β1923|year=2007|last1=Hanna|first1=J.|last2=Wernig|first2=M.|last3=Markoulaki|first3=S.|last4=Sun|first4=C.-W.|last5=Meissner|first5=A.|last6=Cassady|first6=J. P.|last7=Beard|first7=C.|last8=Brambrink|first8=T.|last9=Wu|first9=L.-C.|last10=Townes|first10=T. M.|last11=Jaenisch|first11=R.|bibcode=2007Sci...318.1920H|s2cid=657569}}</ref> On January 16, 2008, a California-based company, Stemagen, announced that they had created the first mature cloned human embryos from single skin cells taken from adults. These embryos can be harvested for patient matching embryonic stem cells.<ref>{{cite news | url=http://news.bbc.co.uk/2/hi/science/nature/7194161.stm | title=US team makes embryo clone of men | author=Helen Briggs | publisher=[[BBC]] | date=2008-01-17 | pages=A01 | access-date=2008-01-18 | archive-date=2018-06-22 | archive-url=https://web.archive.org/web/20180622010307/http://news.bbc.co.uk/2/hi/science/nature/7194161.stm | url-status=live }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)