Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Reciprocal sums == <!-- Borwein credits some formulae to {{Citation | author = Landau, E. | title = Sur la Série des Invers de Nombres de Fibonacci | journal = Bull. Soc. Math. France | volume = 27 | year = 1899 | pages = 298–300}} --> Infinite sums over [[multiplicative inverse|reciprocal]] Fibonacci numbers can sometimes be evaluated in terms of [[theta function]]s. For example, the sum of every odd-indexed reciprocal Fibonacci number can be written as <math display=block>\sum_{k=1}^\infty \frac{1}{F_{2 k-1}} = \frac{\sqrt{5}}{4} \; \vartheta_2\!\left(0, \frac{3-\sqrt 5}{2}\right)^2 ,</math> and the sum of squared reciprocal Fibonacci numbers as <math display=block>\sum_{k=1}^\infty \frac{1}{{F_k}^2} = \frac{5}{24} \!\left(\vartheta_2\!\left(0, \frac{3-\sqrt 5}{2}\right)^4 - \vartheta_4\!\left(0, \frac{3-\sqrt 5}{2}\right)^4 + 1 \right).</math> If we add 1 to each Fibonacci number in the first sum, there is also the closed form <math display=block>\sum_{k=1}^\infty \frac{1}{1+F_{2 k-1}} = \frac{\sqrt{5}}{2},</math> and there is a ''nested'' sum of squared Fibonacci numbers giving the reciprocal of the [[golden ratio]], <math display=block>\sum_{k=1}^\infty \frac{(-1)^{k+1}}{\sum_{j=1}^k {F_{j}}^2} = \frac{\sqrt{5}-1}{2} .</math> The sum of all even-indexed reciprocal Fibonacci numbers is<ref>[[Edmund Landau|Landau]] (1899)<!-- most probably: {{Citation | author = Landau, E. | title = Sur la Série des Invers de Nombres de Fibonacci | journal = Bull. Soc. Math. France | volume = 27 | year = 1899 | pages = 298–300}} --> quoted according [[#Borwein|Borwein]], Page 95, Exercise 3b.</ref> <math display=block>\sum_{k=1}^{\infty} \frac{1}{F_{2 k}} = \sqrt{5} \left(L(\psi^2) - L(\psi^4)\right) </math> with the [[Lambert series]] <math>\textstyle L(q) := \sum_{k=1}^{\infty} \frac{q^k}{1-q^k} ,</math> since <math>\textstyle \frac{1}{F_{2 k}} = \sqrt{5} \left(\frac{\psi^{2 k}}{1-\psi^{2 k}} - \frac{\psi^{4 k}}{1-\psi^{4 k}} \right)\!.</math> So the [[reciprocal Fibonacci constant]] is<ref>{{Cite OEIS|1=A079586|2=Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the {{mvar|k}}-th Fibonacci number|mode=cs2}}</ref> <math display=block>\sum_{k=1}^{\infty} \frac{1}{F_k} = \sum_{k=1}^\infty \frac{1}{F_{2 k-1}} + \sum_{k=1}^{\infty} \frac {1}{F_{2 k}} = 3.359885666243 \dots</math> Moreover, this number has been proved [[irrational number|irrational]] by [[Richard André-Jeannin]].<ref>{{citation | last = André-Jeannin | first = Richard | title = Irrationalité de la somme des inverses de certaines suites récurrentes | journal = [[Comptes Rendus de l'Académie des Sciences, Série I]] | volume = 308 | year = 1989 | issue = 19 | pages = 539–41 |mr=0999451}}</ref> '''Millin's series''' gives the identity<ref>{{citation|title=Mathematical Gems III|volume=9|series=Dolciani Mathematical Expositions|first=Ross|last=Honsberger|publisher=American Mathematical Society|year=1985|isbn=9781470457181|contribution=Millin's series|pages=135–136|contribution-url=https://books.google.com/books?id=vl_0DwAAQBAJ&pg=PA135}}</ref> <math display=block>\sum_{k=0}^{\infty} \frac{1}{F_{2^k}} = \frac{7 - \sqrt{5}}{2},</math> which follows from the closed form for its partial sums as {{mvar|N}} tends to infinity: <math display=block>\sum_{k=0}^N \frac{1}{F_{2^k}} = 3 - \frac{F_{2^N-1}}{F_{2^N}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)