Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Properties === The [[Bohr–Mollerup theorem]] states that among all functions extending the factorial functions to the positive real numbers, only the gamma function is [[log-convex]], that is, its [[natural logarithm]] is [[convex function|convex]] on the positive real axis. Another characterisation is given by the [[Wielandt theorem]]. The gamma function is the unique function that simultaneously satisfies # <math>\Gamma(1) = 1</math>, # <math>\Gamma(z+1) = z \Gamma(z)</math> for all complex numbers <math>z</math> except the non-positive integers, and, # for integer {{mvar|n}}, <math display="inline">\lim_{n \to \infty} \frac{\Gamma(n+z)}{\Gamma(n)\;n^z} = 1</math> for all complex numbers <math>z</math>.<ref name="Davis" /> In a certain sense, the log-gamma function is the more natural form; it makes some intrinsic attributes of the function clearer. A striking example is the [[Taylor series]] of {{math|logΓ}} around 1: <math display="block">\operatorname{log\Gamma}(z+1)= -\gamma z +\sum_{k=2}^\infty \frac{\zeta(k)}{k} \, (-z)^k \qquad \forall\; |z| < 1</math> with {{math|''ζ''(''k'')}} denoting the [[Riemann zeta function]] at {{mvar|k}}. So, using the following property: <math display="block">\zeta(s) \Gamma(s) = \int_0^\infty \frac{t^s}{e^t-1} \, \frac{dt}{t}</math> an integral representation for the log-gamma function is: <math display="block">\operatorname{log\Gamma}(z+1)= -\gamma z + \int_0^\infty \frac{e^{-zt} - 1 + z t}{t \left(e^t - 1\right)} \, dt </math> or, setting {{math|1=''z'' = 1}} to obtain an integral for {{math|''γ''}}, we can replace the {{math|''γ''}} term with its integral and incorporate that into the above formula, to get: <math display="block">\operatorname{log\Gamma}(z+1)= \int_0^\infty \frac{e^{-zt} - ze^{-t} - 1 + z}{t \left(e^t -1\right)} \, dt\,. </math> There also exist special formulas for the logarithm of the gamma function for rational {{mvar|z}}. For instance, if <math>k</math> and <math>n</math> are integers with <math>k<n</math> and <math>k\neq n/2 \,,</math> then<ref name="iaroslav_07">{{cite journal |last=Blagouchine |first=Iaroslav V. |year=2015 |title=A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations |journal=Journal of Number Theory |volume=148 |pages=537–592 |arxiv=1401.3724 |doi=10.1016/j.jnt.2014.08.009}}</ref> <math display="block"> \begin{align} \operatorname{log\Gamma} \left(\frac{k}{n}\right) = {} & \frac{\,(n-2k)\log2\pi\,}{2n} + \frac{1}{2}\left\{\,\log\pi-\log\sin\frac{\pi k}{n} \,\right\} + \frac{1}{\pi}\!\sum_{r=1}^{n-1}\frac{\,\gamma+\log r\,}{r}\cdot\sin\frac{\,2\pi r k\,}{n} \\ & {} - \frac{1}{2\pi}\sin\frac{2\pi k}{n}\cdot\!\int_0^\infty \!\!\frac{\,e^{-nx}\!\cdot\log x\,}{\,\cosh x -\cos( 2\pi k/n )\,}\,{\mathrm d}x. \end{align} </math>This formula is sometimes used for numerical computation, since the integrand decreases very quickly.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)