Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Homotopy groups of spheres
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Table of stable homotopy groups== The stable homotopy groups {{math|Ο{{su|lh=1|b=''k''|p=''S''}}}} are the products of cyclic groups of the infinite or prime power orders shown in the table. (For largely historical reasons, stable homotopy groups are usually given as products of cyclic groups of prime power order, while tables of unstable homotopy groups often give them as products of the smallest number of cyclic groups.) For {{math|''p'' > 5}}, the part of the {{mvar|p}}-component that is accounted for by the {{mvar|J}}-homomorphism is cyclic of order {{mvar|p}} if {{math|2(''p'' − 1)}} divides {{math|''k'' + 1}} and 0 otherwise.<ref>{{harvnb|Fuks|2001}}. The 2-components can be found in {{harvtxt|Isaksen|Wang|Xu|2023}}, and the 3- and 5-components in {{harvtxt|Ravenel|2003}}.</ref> The mod 8 behavior of the table comes from [[Bott periodicity]] via the [[J-homomorphism]], whose image is underlined. {| class="toccontents" border="1" cellpadding="4" style="text-align: center" |-style="background: #eee" ! ''n'' β ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 |- ! Ο<sub>0+''n''</sub><sup>''S''</sup> | β | <u>2</u> | 2 | <u>8β 3</u> | β | β | 2 | <u>16β 3β 5</u> |- ! Ο<sub>8+''n''</sub><sup>''S''</sup> | <u>2</u>β 2 | <u>2</u>β 2<sup>2</sup> | 2β 3 | <u>8β 9β 7</u> | β | 3 | 2<sup>2</sup> | <u>32</u>β 2β <u>3β 5</u> |- ! Ο<sub>16+''n''</sub><sup>''S''</sup> | <u>2</u>β 2 | <u>2</u>β 2<sup>3</sup> | 8β 2 | <u>8</u>β 2β <u>3β 11</u> | 8β 3 | 2<sup>2</sup> | 2β 2 | <u>16</u>β 8β 2β <u>9</u>β 3β <u>5β 7β 13</u> |- ! Ο<sub>24+''n''</sub><sup>''S''</sup> | <u>2</u>β 2 | <u>2</u>β 2 | 2<sup>2</sup>β 3 | <u>8β 3</u> | 2 | 3 | 2β 3 | <u>64</u>β 2<sup>2</sup>β <u>3β 5β 17</u> |- ! Ο<sub>32+''n''</sub><sup>''S''</sup> | <u>2</u>β 2<sup>3</sup> | <u>2</u>β 2<sup>4</sup> | 4β 2<sup>3</sup> | <u>8</u>β 2<sup>2</sup>β <u>27β 7β 19</u> | 2β 3 | 2<sup>2</sup>β 3 | 4β 2β 3β 5 | <u>16</u>β 2<sup>5</sup>β 3β <u>3β 25β 11</u> |- ! Ο<sub>40+''n''</sub><sup>''S''</sup> | <u>2</u>β 4β 2<sup>4</sup>β 3 | <u>2</u>β 2<sup>4</sup> | 8β 2<sup>2</sup>β 3 | <u>8β 3β 23</u> | 8 | 16β 2<sup>3</sup>β 9β 5 | 2<sup>4</sup>β 3 | <u>32</u>β 4β 2<sup>3</sup>β <u>9</u>β 3β <u>5β 7β 13</u> |- ! Ο<sub>48+''n''</sub><sup>''S''</sup> | <u>2</u>β 4β 2<sup>3</sup> | <u>2</u>β 2β 3 | 2<sup>3</sup>β 3 | <u>8</u>β 8β 2β <u>3</u> | 2<sup>3</sup>β 3 | 2<sup>4</sup> | 4β 2 | <u>16</u>β 3β <u>3β 5β 29</u> |- ! Ο<sub>56+''n''</sub><sup>''S''</sup> | <u>2</u> | <u>2</u>β 2<sup>2</sup> | 2<sup>2</sup> | <u>8</u>β 2<sup>2</sup>β <u>9β 7β 11β 31</u> | 4 | β | 2<sup>4</sup>β 3 | <u>128</u>β 4β 2<sup>2</sup>β <u>3β 5β 17</u> |- ! Ο<sub>64+''n''</sub><sup>''S''</sup> | <u>2</u>β 4β 2<sup>5</sup> | <u>2</u>β 4β 2<sup>8</sup>β 3 | 8β 2<sup>6</sup> | <u>8</u>β 4β 2<sup>3</sup>β <u>3</u> | 2<sup>3</sup>β 3 | 2<sup>4</sup> | 4<sup>2</sup>β 2<sup>5</sup> | <u>16</u>β 8β 4β 2<sup>6</sup>β <u>27β 5β 7β 13β 19β 37</u> |- ! Ο<sub>72+''n''</sub><sup>''S''</sup> | <u>2</u>β 2<sup>7</sup>β 3 | <u>2</u>β 2<sup>6</sup> | 4<sup>3</sup>β 2β 3 | <u>8</u>β 2β 9β <u>3</u> | 4β 2<sup>2</sup>β 5 | 4β 2<sup>5</sup> | 4<sup>2</sup>β 2<sup>3</sup>β 3 | <u>32</u>β 4β 2<sup>6</sup>β <u>3β 25β 11β 41</u> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)