Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperbolic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Comparison with circular functions== [[File:Circular and hyperbolic angle.svg|right|upright=1.2|thumb|Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of [[sector of a circle|circular sector]] area {{mvar|u}} and hyperbolic functions depending on [[hyperbolic sector]] area {{mvar|u}}.]] The hyperbolic functions represent an expansion of [[trigonometry]] beyond the [[circular function]]s. Both types depend on an [[argument of a function|argument]], either [[angle|circular angle]] or [[hyperbolic angle]]. Since the [[Circular sector#Area|area of a circular sector]] with radius {{mvar|r}} and angle {{mvar|u}} (in radians) is {{math|1=''r''<sup>2</sup>''u''/2}}, it will be equal to {{mvar|u}} when {{math|1=''r'' = {{sqrt|2}}}}. In the diagram, such a circle is tangent to the hyperbola ''xy'' = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a [[hyperbolic sector]] with area corresponding to hyperbolic angle magnitude. The legs of the two [[right triangle]]s with hypotenuse on the ray defining the angles are of length {{radic|2}} times the circular and hyperbolic functions. The hyperbolic angle is an [[invariant measure]] with respect to the [[squeeze mapping]], just as the circular angle is invariant under rotation.<ref>[[Mellen W. Haskell|Haskell, Mellen W.]], "On the introduction of the notion of hyperbolic functions", [[Bulletin of the American Mathematical Society]] '''1''':6:155β9, [https://www.ams.org/journals/bull/1895-01-06/S0002-9904-1895-00266-9/S0002-9904-1895-00266-9.pdf full text]</ref> The [[Gudermannian function]] gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function {{math|''a'' cosh(''x''/''a'')}} is the [[catenary]], the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)