Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Example proof==== :<math>\begin{align} \sin(\phi) &= z \\ \phi &= \arcsin(z) \end{align}</math> Using the [[Trigonometric functions#Relationship to exponential function (Euler's formula)|exponential definition of sine]], and letting <math>\xi = e^{i \phi}, </math> :<math>\begin{align} z &= \frac{e^{i \phi} - e^{-i \phi}}{2i} \\[10mu] 2iz &= \xi - \frac{1}{\xi} \\[5mu] 0 &= \xi^2 - 2i z \xi - 1 \\[5mu] \xi &= iz \pm \sqrt{1 - z^2} \\[5mu] \phi &= -i \ln \left(iz \pm \sqrt{1 - z^2}\right) \end{align}</math> (the positive branch is chosen) :<math>\phi= \arcsin(z) = -i \ln \left(iz + \sqrt{1-z^2} \right)</math> {| style="text-align:center;" |+ [[Domain coloring|Color wheel graphs]] of '''inverse trigonometric functions in the [[complex plane]]''' | [[Image:Complex Arcsine.svg|275x275px|Arcsine of z in the complex plane.]] | [[Image:Complex Arccosine.svg|275x275px|Arccosine of z in the complex plane.]] | [[Image:Complex Arctangent.svg|275x275px|Arctangent of z in the complex plane.]] |- | <math>\arcsin(z)</math> | <math>\arccos(z)</math> | <math>\arctan(z)</math> |} {| style="text-align:center;" |+ | [[Image:Complex Arccosecant.svg|275x275px|Arccosecant of z in the complex plane.]] | [[Image:Complex Arcsecant.svg|275x275px|Arcsecant of z in the complex plane.]] | [[Image:Complex Arccotangent.svg|275x275px|Arccotangent of z in the complex plane.]] |- | <math>\arccsc(z)</math> | <math>\arcsec(z)</math> | <math>\arccot(z)</math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)