Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Invertible matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Reciprocal basis vectors method === {{Main|Reciprocal basis}} Given an {{math|''n'' Γ ''n''}} square matrix <math>\mathbf{X} = \left[ x^{ij} \right] </math>, <math> 1 \leq i,j \leq n </math>, with {{mvar|n}} rows interpreted as {{mvar|n}} vectors <math>\mathbf{x}_{i} = x^{ij} \mathbf{e}_{j}</math> ([[Einstein summation]] assumed) where the <math>\mathbf{e}_{j}</math> are a standard [[orthonormal basis]] of [[Euclidean space]] <math>\mathbb{R}^{n}</math> (<math>\mathbf{e}_{i} = \mathbf{e}^{i}, \mathbf{e}_{i} \cdot \mathbf{e}^{j} = \delta_i^j</math>), then using [[Clifford algebra]] (or [[geometric algebra]]) we compute the reciprocal (sometimes called [[Geometric algebra#Dual basis|dual]]) column vectors: :<math>\mathbf{x}^{i} = x_{ji} \mathbf{e}^{j} = (-1)^{i-1} (\mathbf{x}_{1} \wedge\cdots\wedge ()_{i} \wedge\cdots\wedge\mathbf{x}_{n}) \cdot (\mathbf{x}_{1} \wedge\ \mathbf{x}_{2} \wedge\cdots\wedge\mathbf{x}_{n})^{-1} </math> as the columns of the inverse matrix <math>\mathbf{X}^{-1} = [x_{ji}].</math> Note that, the place "<math>()_{i}</math>" indicates that "<math>\mathbf{x}_{i}</math>" is removed from that place in the above expression for <math>\mathbf{x}^{i}</math>. We then have <math>\mathbf{X}\mathbf{X}^{-1} = \left[ \mathbf{x}_{i} \cdot \mathbf{x}^{j} \right] = \left[ \delta_{i}^{j} \right] = \mathbf{I}_{n} </math>, where <math>\delta_{i}^{j}</math> is the [[Kronecker delta]]. We also have <math>\mathbf{X}^{-1}\mathbf{X} = \left[\left(\mathbf{e}_{i}\cdot\mathbf{x}^{k}\right)\left(\mathbf{e}^{j}\cdot\mathbf{x}_{k}\right)\right] = \left[\mathbf{e}_{i}\cdot\mathbf{e}^{j}\right] = \left[\delta_{i}^{j}\right] = \mathbf{I}_{n}</math>, as required. If the vectors <math>\mathbf{x}_{i}</math> are not linearly independent, then <math>(\mathbf{x}_{1} \wedge \mathbf{x}_{2} \wedge\cdots\wedge\mathbf{x}_{n}) = 0</math> and the matrix <math>\mathbf{X}</math> is not invertible (has no inverse).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)