Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Language acquisition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cochlear implants === Other options besides sign language for kids with prelingual deafness include the use of hearing aids to strengthen remaining sensory cells or [[cochlear implant]]s to stimulate the hearing nerve directly. Cochlear implants (often known simply as CIs) are hearing devices that are placed behind the ear and contain a receiver and electrodes which are placed under the skin and inside the cochlea. Despite these developments, there is still a risk that prelingually deaf children may not develop good speech and speech reception skills. Although cochlear implants produce sounds, they are unlike typical hearing and deaf and hard of hearing people must undergo intensive therapy in order to learn how to interpret these sounds. They must also learn how to speak given the range of hearing they may or may not have. However, deaf children of deaf parents tend to do better with language, even though they are isolated from sound and speech because their language uses a different mode of communication that is accessible to them: the visual modality of language. Although cochlear implants were initially approved for adults, now there is pressure to implant children early in order to maximize auditory skills for mainstream learning which in turn has created controversy around the topic. Due to recent advances in technology, cochlear implants allow some deaf people to acquire some sense of hearing. There are interior and exposed exterior components that are surgically implanted. Those who receive cochlear implants earlier on in life show more improvement on speech comprehension and language. Spoken language development does vary widely for those with cochlear implants though due to a number of different factors including: age at implantation, frequency, quality and type of speech training. Some evidence suggests that speech processing occurs at a more rapid pace in some prelingually deaf children with cochlear implants than those with traditional hearing aids. However, cochlear implants may not always work. Research shows that people develop better language with a cochlear implant when they have a solid first language to rely on to understand the second language they would be learning. In the case of prelingually deaf children with cochlear implants, a signed language, like [[American Sign Language]] would be an accessible language for them to learn to help support the use of the cochlear implant as they learn a spoken language as their L2. Without a solid, accessible first language, these children run the risk of language deprivation, especially in the case that a cochlear implant fails to work. They would have no access to sound, meaning no access to the spoken language they are supposed to be learning. If a signed language was not a strong language for them to use and neither was a spoken language, they now have no access to any language and run the risk of missing their [[critical period]]. In June 2024, a cross-sectional study that the notable [[academic journal]] ''[[Scientific Reports]]'' published cautioned that "children with CIs exhibit significant variability in speech and language development": both "with too many recipients demonstrating suboptimal outcomes" and also with the investigations of those individuals broadly being "not well defined for prelingually deafened children with CIs, for whom language development is ongoing." The authors found that "the relationships between spectral resolution, temporal resolution, and speech recognition are well defined in adults with cochlear implants (CIs)" in contrast to the situation with children, and they concluded from their research that "[f]urther investigation is warranted to better understand the relationships between spectral resolution, temporal resolution, and speech recognition so that" medical experts methodologically "can identify the underlying mechanisms driving auditory-based speech perception in children with CIs."<ref>{{cite journal |last1=DeFreese |first1=Andrea |last2=Camarata |first2=Stephen |last3=Sunderhaus |first3=Linsey |last4=Holder |first4=Jourdan |last5=Berg |first5=Katelyn |last6=Lighterink |first6=Mackenzie |last7=Gifford |first7=RenΓ© |title=The impact of spectral and temporal processing on speech recognition in children with cochlear implants |journal=Scientific Reports |date=18 June 2024 |volume=14 |issue=1 |page=14094 |doi=10.1038/s41598-024-63932-w |pmid=38890428 |pmc=11189542 |bibcode=2024NatSR..1414094D }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)