Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lorentz transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spinors === Equation {{EquationNote|(T1)}} hold unmodified for any representation of the Lorentz group, including the [[bispinor]] representation. In {{EquationNote|(T2)}} one simply replaces all occurrences of {{math|Ξ}} by the bispinor representation {{math|Ξ (Ξ)}}, {{Equation box 1 |indent =: |equation = <math>\begin{align} u \otimes v \rightarrow \Pi(\Lambda) u \otimes \Pi(\Lambda) v &= {\Pi(\Lambda)^\alpha}_\beta u^\beta \otimes {\Pi(\Lambda)^\rho}_\sigma v^\sigma\\ &= {\Pi(\Lambda)^\alpha}_\beta {\Pi(\Lambda)^\rho}_\sigma u^\beta \otimes v^\sigma\\ &\equiv {\Pi(\Lambda)^\alpha}_\beta {\Pi(\Lambda)^\rho}_\sigma w^{\beta\sigma} \end{align}</math> {{spaces|13}} {{EquationRef|(T4)}} |cellpadding= 6 |border |border colour = #0073CF |bgcolor=#F9FFF7 }} The above equation could, for instance, be the transformation of a state in [[Fock space]] describing two free electrons. ==== Transformation of general fields ==== A general ''noninteracting'' multi-particle state (Fock space state) in [[quantum field theory]] transforms according to the rule<ref>{{harvnb|Weinberg|2002|loc=Chapter 3}}</ref> {{NumBlk||<math display="block">\begin{align} &U(\Lambda, a) \Psi_{p_1\sigma_1 n_1; p_2\sigma_2 n_2; \cdots} \\ = {} &e^{-ia_\mu \left[(\Lambda p_1)^\mu + (\Lambda p_2)^\mu + \cdots\right]} \sqrt{\frac{(\Lambda p_1)^0(\Lambda p_2)^0\cdots}{p_1^0 p_2^0 \cdots}} \left( \sum_{\sigma_1'\sigma_2' \cdots} D_{\sigma_1'\sigma_1}^{(j_1)}\left[W(\Lambda, p_1)\right] D_{\sigma_2'\sigma_2}^{(j_2)}\left[W(\Lambda, p_2)\right] \cdots \right) \Psi_{\Lambda p_1 \sigma_1' n_1; \Lambda p_2 \sigma_2' n_2; \cdots}, \end{align}</math> | {{EquationRef|1}} }} where {{math|''W''(Ξ, ''p'')}} is the [[Wigner's classification|Wigner's little group]]<ref>{{Cite web |title=INSPIRE |url=https://inspirehep.net/literature/26312 |access-date=2024-09-04 |website=inspirehep.net}}</ref> and {{math|''D''{{sup|(''j'')}}}} is the {{nowrap|{{math|(2''j'' + 1)}}-dimensional}} representation of {{math|SO(3)}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)