Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix exponential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Evaluation by implementation of [[Sylvester's formula]] == A practical, expedited computation of the above reduces to the following rapid steps. Recall from above that an {{math|''n'' × ''n''}} matrix {{math|exp(''tA'')}} amounts to a linear combination of the first {{mvar|n}}−1 powers of {{mvar|A}} by the [[Cayley–Hamilton theorem]]. For [[diagonalizable matrix|diagonalizable]] matrices, as illustrated above, e.g. in the {{math|2 × 2}} case, [[Sylvester's formula]] yields {{math|1=exp(''tA'') = ''B<sub>α</sub>'' exp(''tα'') + ''B<sub>β</sub>'' exp(''tβ'')}}, where the {{mvar|B}}s are the [[Frobenius covariant]]s of {{mvar|A}}. It is easiest, however, to simply solve for these {{mvar|B}}s directly, by evaluating this expression and its first derivative at {{math|1=''t'' = 0}}, in terms of {{mvar|A}} and {{mvar|I}}, to find the same answer as above. But this simple procedure also works for [[defective matrix|defective]] matrices, in a generalization due to Buchheim.<ref>Rinehart, R. F. (1955). "[https://www.jstor.org/stable/2306996 The equivalence of definitions of a matric function]". ''The American Mathematical Monthly'', '''62''' (6), 395-414.</ref> This is illustrated here for a {{math|4 × 4}} example of a matrix which is ''not diagonalizable'', and the {{mvar|B}}s are not projection matrices. Consider <math display="block">A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{8} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} ~,</math> with eigenvalues {{math|1=''λ''<sub>1</sub> = 3/4}} and {{math|1=''λ''<sub>2</sub> = 1}}, each with a multiplicity of two. Consider the exponential of each eigenvalue multiplied by {{mvar|t}}, {{math|exp(''λ<sub>i</sub>t'')}}. Multiply each exponentiated eigenvalue by the corresponding undetermined coefficient matrix {{math|''B''<sub>''i''</sub>}}. If the eigenvalues have an algebraic multiplicity greater than 1, then repeat the process, but now multiplying by an extra factor of {{mvar|t}} for each repetition, to ensure linear independence. (If one eigenvalue had a multiplicity of three, then there would be the three terms: <math>B_{i_1} e^{\lambda_i t}, ~ B_{i_2} t e^{\lambda_i t}, ~ B_{i_3} t^2 e^{\lambda_i t} </math>. By contrast, when all eigenvalues are distinct, the {{mvar|B}}s are just the [[Frobenius covariant]]s, and solving for them as below just amounts to the inversion of the [[Vandermonde matrix]] of these 4 eigenvalues.) Sum all such terms, here four such, <math display="block">\begin{align} e^{At} &= B_{1_1} e^{\lambda_1 t} + B_{1_2} t e^{\lambda_1 t} + B_{2_1} e^{\lambda_2 t} + B_{2_2} t e^{\lambda_2 t} , \\ e^{At} &= B_{1_1} e^{\frac{3}{4} t} + B_{1_2} t e^{\frac{3}{4} t} + B_{2_1} e^{1 t} + B_{2_2} t e^{1 t} ~. \end{align}</math> To solve for all of the unknown matrices {{mvar|B}} in terms of the first three powers of {{mvar|A}} and the identity, one needs four equations, the above one providing one such at {{mvar|t}} = 0. Further, differentiate it with respect to {{mvar|t}}, <math display="block">A e^{A t} = \frac{3}{4} B_{1_1} e^{\frac{3}{4} t} + \left( \frac{3}{4} t + 1 \right) B_{1_2} e^{\frac{3}{4} t} + 1 B_{2_1} e^{1 t} + \left(1 t + 1 \right) B_{2_2} e^{1 t} ~,</math> and again, <math display="block">\begin{align} A^2 e^{At} &= \left(\frac{3}{4}\right)^2 B_{1_1} e^{\frac{3}{4} t} + \left( \left(\frac{3}{4}\right)^2 t + \left( \frac{3}{4} + 1 \cdot \frac{3}{4}\right) \right) B_{1_2} e^{\frac{3}{4} t} + B_{2_1} e^{1 t} + \left(1^2 t + (1 + 1 \cdot 1 )\right) B_{2_2} e^{1 t} \\ &= \left(\frac{3}{4}\right)^2 B_{1_1} e^{\frac{3}{4} t} + \left( \left(\frac{3}{4}\right)^2 t + \frac{3}{2} \right) B_{1_2} e^{\frac{3}{4} t} + B_{2_1} e^{t} + \left(t + 2\right) B_{2_2} e^{t} ~, \end{align}</math> and once more, <math display="block">\begin{align} A^3 e^{At} &= \left(\frac{3}{4}\right)^3 B_{1_1} e^{\frac{3}{4} t} + \left( \left(\frac{3}{4}\right)^3 t + \left( \left(\frac{3}{4}\right)^2 + \left(\frac{3}{2}\right) \cdot \frac{3}{4}\right) \right) B_{1_2} e^{\frac{3}{4} t} + B_{2_1} e^{1 t} + \left(1^3 t + (1 + 2) \cdot 1 \right) B_{2_2} e^{1 t} \\ &= \left(\frac{3}{4}\right)^3 B_{1_1} e^{\frac{3}{4} t}\! + \left( \left(\frac{3}{4}\right)^3 t\! + \frac{27}{16} \right) B_{1_2} e^{\frac{3}{4} t}\! + B_{2_1} e^{t}\! + \left(t + 3\cdot 1\right) B_{2_2} e^{t} ~. \end{align}</math> (In the general case, {{mvar|n}}−1 derivatives need be taken.) Setting {{mvar|t}} = 0 in these four equations, the four coefficient matrices {{mvar|B}}s may now be solved for, <math display="block">\begin{align} I &= B_{1_1} + B_{2_1} \\ A &= \frac{3}{4} B_{1_1} + B_{1_2} + B_{2_1} + B_{2_2} \\ A^2 &= \left(\frac{3}{4}\right)^2 B_{1_1} + \frac{3}{2} B_{1_2} + B_{2_1} + 2 B_{2_2} \\ A^3 &= \left(\frac{3}{4}\right)^3 B_{1_1} + \frac{27}{16} B_{1_2} + B_{2_1} + 3 B_{2_2} ~, \end{align} </math> to yield <math display="block">\begin{align} B_{1_1} &= 128 A^3 - 366 A^2 + 288 A - 80 I \\ B_{1_2} &= 16 A^3 - 44 A^2 + 40 A - 12 I \\ B_{2_1} &= -128 A^3 + 366 A^2 - 288 A + 80 I \\ B_{2_2} &= 16 A^3 - 40 A^2 + 33 A - 9 I ~. \end{align}</math> Substituting with the value for {{mvar|A}} yields the coefficient matrices <math display="block">\begin{align} B_{1_1} &= \begin{bmatrix}0 & 0 & 48 & -16\\ 0 & 0 & -8 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\\ B_{1_2} &= \begin{bmatrix}0 & 0 & 4 & -2\\ 0 & 0 & -1 & \frac{1}{2}\\ 0 & 0 & \frac{1}{4} & -\frac{1}{8}\\ 0 & 0 & \frac{1}{2} & -\frac{1}{4} \end{bmatrix}\\ B_{2_1} &= \begin{bmatrix}1 & 0 & -48 & 16\\ 0 & 1 & 8 & -2\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{bmatrix}\\ B_{2_2} &= \begin{bmatrix}0 & 1 & 8 & -2\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\end{bmatrix} \end{align}</math> so the final answer is <math display="block">e^{tA} = \begin{bmatrix} e^t & te^t & \left(8t - 48\right) e^t\! + \left(4t + 48\right)e^{\frac{3}{4}t} & \left(16 - 2\,t\right)e^t\! + \left(-2t - 16\right)e^{\frac{3}{4}t}\\ 0 & e^t & 8e^t\! + \left(-t - 8\right) e^{\frac{3}{4}t} & -2e^t + \frac{t + 4}{2}e^{\frac{3}{4}t}\\ 0 & 0 & \frac{t + 4}{4}e^{\frac{3}{4}t} & -\frac{t}{8}e^{\frac{3}{4}t}\\ 0 & 0 & \frac{t}{2}e^{\frac{3}{4}t} & -\frac{t - 4}{4}e^{\frac{3}{4}t} ~. \end{bmatrix} </math> The procedure is much shorter than [[Matrix differential equation#Putzer Algorithm for computing eAt|Putzer's algorithm]] sometimes utilized in such cases. {{See also|Derivative of the exponential map}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)