Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Neuron
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Neuron doctrine=== [[File:PurkinjeCell.jpg|thumb|Drawing of neurons in the pigeon [[cerebellum]], by Spanish neuroscientist [[Santiago Ramón y Cajal]] in 1899. (A) denotes [[Purkinje cell]]s and (B) denotes [[granule cells]], both of which are multipolar.]] The neuron doctrine is the now fundamental idea that neurons are the basic structural and functional units of the nervous system. The theory was put forward by Santiago Ramón y Cajal in the late 19th century. It held that neurons are discrete cells (not connected in a meshwork), acting as metabolically distinct units. Later discoveries yielded refinements to the doctrine. For example, [[Neuroglia|glial cells]], which are non-neuronal, play an essential role in information processing.<ref>{{cite journal | vauthors = Witcher MR, Kirov SA, Harris KM | title = Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus | journal = Glia | volume = 55 | issue = 1 | pages = 13–23 | date = January 2007 | pmid = 17001633 | doi = 10.1002/glia.20415 | citeseerx = 10.1.1.598.7002 | s2cid = 10664003 }}</ref> Also, electrical synapses are more common than previously thought,<ref>{{cite journal | vauthors = Connors BW, Long MA | title = Electrical synapses in the mammalian brain | journal = Annual Review of Neuroscience | volume = 27 | issue = 1 | pages = 393–418 | year = 2004 | pmid = 15217338 | doi = 10.1146/annurev.neuro.26.041002.131128 | url = https://zenodo.org/record/894386 }}</ref> comprising direct, cytoplasmic connections between neurons; In fact, neurons can form even tighter couplings: the squid giant axon arises from the fusion of multiple axons.<ref>{{cite journal | vauthors = Guillery RW | title = Observations of synaptic structures: origins of the neuron doctrine and its current status | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 360 | issue = 1458 | pages = 1281–307 | date = June 2005 | pmid = 16147523 | pmc = 1569502 | doi = 10.1098/rstb.2003.1459 }}</ref> Ramón y Cajal also postulated the Law of Dynamic Polarization, which states that a neuron receives signals at its dendrites and cell body and transmits them, as action potentials, along the axon in one direction: away from the cell body.<ref name="sabb">{{cite journal | vauthors = Sabbatini RM | date = April–July 2003 | url = http://www.cerebromente.org.br/n17/history/neurons3_i.htm | title = Neurons and Synapses: The History of Its Discovery | journal = Brain & Mind Magazine | pages = 17 }}</ref> The Law of Dynamic Polarization has important exceptions; dendrites can serve as synaptic output sites of neurons<ref>{{cite journal | vauthors = Djurisic M, Antic S, Chen WR, Zecevic D | title = Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones | journal = The Journal of Neuroscience | volume = 24 | issue = 30 | pages = 6703–14 | date = July 2004 | pmid = 15282273 | pmc = 6729725 | doi = 10.1523/JNEUROSCI.0307-04.2004 | hdl = 1912/2958 }} </ref> and axons can receive synaptic inputs.<ref>{{cite journal | vauthors = Cochilla AJ, Alford S | title = Glutamate receptor-mediated synaptic excitation in axons of the lamprey | journal = The Journal of Physiology | volume = 499 | issue = Pt 2 | pages = 443–57 | date = March 1997 | pmid = 9080373 | pmc = 1159318 | doi = 10.1113/jphysiol.1997.sp021940 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)