Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Permutation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Foata's transition lemma === [[Dominique Foata|Foata]]'s ''fundamental bijection'' transforms a permutation {{mvar|σ}} with a given canonical cycle form into the permutation <math>f(\sigma) = \hat\sigma </math> whose one-line notation has the same sequence of elements with parentheses removed.<ref name="Stanley2012" />{{sfn|Bona|2012|pp=109β110}} For example: <math display="block">\sigma = (513)(6)(827)(94) = \begin{pmatrix} 1&2&3&4&5&6&7&8&9\\ 3&7&5&9&1&6&8&2&4 \end{pmatrix}, </math> <math display="block">\hat\sigma = 513682794 = \begin{pmatrix} 1&2&3&4&5&6&7&8&9\\ 5&1&3&6&8&2&7&9&4 \end{pmatrix}. </math> Here the first element in each canonical cycle of {{mvar|σ}} becomes a record (left-to-right maximum) of <math>\hat\sigma </math>. Given <math>\hat\sigma </math>, one may find its records and insert parentheses to construct the inverse transformation <math>\sigma=f^{-1}(\hat\sigma) </math>. Underlining the records in the above example: <math>\hat\sigma = \underline{5}\, 1\, 3\, \underline{6}\, \underline{8}\,2\,7\,\underline{9}\,4 </math>, which allows the reconstruction of the cycles of {{mvar|σ}}. The following table shows <math>\hat\sigma </math> and {{mvar|σ}} for the six permutations of ''S'' = {1, 2, 3}, with the bold text on each side showing the notation used in the bijection: one-line notation for <math>\hat\sigma </math> and canonical cycle notation for {{mvar|σ}}. <math display="block"> \begin{array}{l|l} \hat\sigma = f(\sigma) & \sigma=f^{-1}(\hat\sigma) \\ \hline \mathbf{123}=(\,1\,)(\,2\,)(\,3\,) & 123=\mathbf{(\,1\,)(\,2\,)(\,3\,)} \\ \mathbf{132}=(\,1\,)(\,3\,2\,) & 132=\mathbf{(\,1\,)(\,3\,2\,)} \\ \mathbf{213}=(\,2\,1\,)(\,3\,) & 213=\mathbf{(\,2\,1\,)(\,3\,)} \\ \mathbf{231}=(\,3\,1\,2\,) & 321=\mathbf{(\,2\,)(\,3\,1\,)} \\ \mathbf{312}=(\,3\,2\,1\,) & 231=\mathbf{(\,3\,1\,2\,)} \\ \mathbf{321}=(\,2\,)(\,3\,1\,) & 312=\mathbf{(\,3\,2\,1\,)} \end{array} </math> As a first corollary, the number of ''n''-permutations with exactly ''k'' records is equal to the number of ''n''-permutations with exactly ''k'' cycles: this last number is the signless [[Stirling number of the first kind]], <math>c(n, k)</math>. Furthermore, Foata's mapping takes an ''n''-permutation with ''k'' weak exceedances to an ''n''-permutation with {{math|''k'' β 1}} ascents.{{sfn|Bona|2012|pp=109β110}} For example, (2)(31) = 321 has ''k ='' 2 weak exceedances (at index 1 and 2), whereas {{math|''f''(321) {{=}} 231}} has {{math|1=''k'' β 1 = 1}} ascent (at index 1; that is, from 2 to 3).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)