Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Polar coordinate system
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Differential geometry == In the modern terminology of [[differential geometry]], polar coordinates provide [[coordinate charts]] for the [[differentiable manifold]] {{math|'''R'''<sup>2</sup> \ {(0,0)}<nowiki/>}}, the plane minus the origin. In these coordinates, the Euclidean [[metric tensor]] is given by<math display="block">ds^2 = dr^2 + r^2 d\theta^2.</math>This can be seen via the change of variables formula for the metric tensor, or by computing the [[differential form]]s ''dx'', ''dy'' via the [[exterior derivative]] of the 0-forms {{math|1=''x'' = ''r'' cos(''θ'')}}, {{math|1=''y'' = ''r'' sin(''θ'')}} and substituting them in the Euclidean metric tensor {{math|1=''ds''<sup>2</sup> = ''dx''<sup>2</sup> + ''dy''<sup>2</sup>}}. {{Collapse top|title=An elementary proof of the formula}} Let <math>p_1=(x_1,y_1)=(r_1,\theta_1)</math>, and <math>p_2=(x_2,y_2)=(r_2,\theta_2)</math> be two points in the plane given by their cartesian and polar coordinates. Then :<math>ds^2=dx^2+dy^2=(x_2-x_1)^2+(y_2-y_1)^2.</math> Since <math>dx^2=(r_2\cos\theta_2-r_1\cos\theta_1)^2</math>, and <math>dy^2=(r_2\sin\theta_2-r_1\sin\theta_1)^2</math>, we get that :<math>ds^2=r_2^2\cos^2\theta_2-2r_1r_2\cos\theta_1\cos\theta_2+r_1^2\cos^2\theta_1+r_2^2\sin^2\theta_2-2r_1r_2\sin\theta_1\sin\theta_2+r_1^2\sin^2\theta_1=</math> :<math>r_2^2(\cos^2\theta_2+\sin^2\theta_2)+r_1^2(\cos^2\theta_1+\sin^2\theta_1)-2r_1r_2(\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)=</math> :<math>r_1^2+r_2^2-2r_1r_2(1-1+\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2)=</math> :<math>(r_2-r_1)^2+2r_1r_2(1-\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2).</math> Now we use the trigonometric identity <math>\cos(\theta_2-\theta_1)=\cos\theta_1\cos\theta_2+\sin\theta_1\sin\theta_2</math> to proceed: :<math>ds^2=dr^2+2r_1r_2(1-\cos d\theta).</math> If the radial and angular quantities are near to each other, and therefore near to a common quantity <math>r</math> and <math>\theta</math>, we have that <math>r_1r_2\approx r^2</math>. Moreover, the cosine of <math>d\theta</math> can be approximated with the Taylor series of the cosine up to linear terms: :<math>\cos d\theta\approx1-\frac{d\theta^2}{2},</math> so that <math>1-\cos d\theta\approx\frac{d\theta^2}{2}</math>, and <math>2r_1r_2(1-\cos d\theta)\approx2r^2\frac{d\theta^2}{2}=r^2d\theta^2</math>. Therefore, around an infinitesimally small domain of any point, :<math>ds^2=dr^2+r^2d\theta^2,</math> as stated. {{Collapse bottom}} An [[Orthonormality|orthonormal]] [[Moving frame|frame]] with respect to this metric is given by<math display="block">e_r = \frac{\partial}{\partial r}, \quad e_\theta = \frac1r \frac{\partial}{\partial \theta},</math>with [[Moving frame#Coframes|dual coframe]]<math display="block">e^r = dr, \quad e^\theta = r d\theta.</math>The [[connection form]] relative to this frame and the [[Levi-Civita connection]] is given by the skew-symmetric matrix of 1-forms<math display="block">{\omega^i}_j = \begin{pmatrix} 0 & -d\theta \\ d\theta & 0\end{pmatrix}</math>and hence the [[curvature form]] {{math|1=Ω = ''dω'' + ''ω''∧''ω''}} vanishes. Therefore, as expected, the punctured plane is a [[flat manifold]].<!-- Rather advanced -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)