Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Pyrolysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Study tools == === Thermogravimetric analysis === [[Thermogravimetric analysis]] (TGA) is one of the most common techniques to investigate pyrolysis with no limitations of heat and mass transfer. The results can be used to determine mass loss kinetics.<ref name="Zhou-2013" /><ref name="Zhou-2015" /><ref name="Zhou-2017" /><ref name="Zhou-2015-2" /><ref name="Zhou-2015-3" /> [[Activation energy|Activation energies]] can be calculated using the [[Kissinger method]] or peak analysis-least square method (PA-LSM).<ref name="Zhou-2017" /><ref name="Zhou-2015-2" /> TGA can couple with [[Fourier-transform infrared spectroscopy]] (FTIR) and [[mass spectrometry]]. As the temperature increases, the volatiles generated from pyrolysis can be measured.<ref>{{cite journal |last1=Zhou |first1=Hui |last2=Meng |first2=AiHong |last3=Long |first3=YanQiu |last4=Li |first4=QingHai |last5=Zhang |first5=YanGuo |title=Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study |journal=Journal of Analytical and Applied Pyrolysis |date=July 2014 |volume=108 |pages=19–25 |doi=10.1016/j.jaap.2014.05.024 |bibcode=2014JAAP..108...19Z }}</ref><ref name="Zhao-2020">{{cite journal |last1=Zhao |first1=Ming |last2=Memon |first2=Muhammad Zaki |last3=Ji |first3=Guozhao |last4=Yang |first4=Xiaoxiao |last5=Vuppaladadiyam |first5=Arun K. |last6=Song |first6=Yinqiang |last7=Raheem |first7=Abdul |last8=Li |first8=Jinhui |last9=Wang |first9=Wei |last10=Zhou |first10=Hui |title=Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production |journal=Renewable Energy |date=April 2020 |volume=148 |pages=168–175 |doi=10.1016/j.renene.2019.12.006 |bibcode=2020REne..148..168Z }}</ref> === Macro-TGA === In TGA, the sample is loaded first before the increase of temperature, and the heating rate is low (less than 100 °C min<sup>−1</sup>). Macro-TGA can use gram-scale samples to investigate the effects of pyrolysis with mass and heat transfer.<ref name="Zhou-2017" /><ref>{{cite journal |last1=Long |first1=Yanqiu |last2=Zhou |first2=Hui |last3=Meng |first3=Aihong |last4=Li |first4=Qinghai |last5=Zhang |first5=Yanguo |title=Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers |journal=Korean Journal of Chemical Engineering |date=September 2016 |volume=33 |issue=9 |pages=2638–2643 |doi=10.1007/s11814-016-0102-x }}</ref> === Pyrolysis–gas chromatography–mass spectrometry === [[Pyrolysis mass spectrometry]] (Py-GC-MS) is an important laboratory procedure to determine the structure of compounds.<ref>{{cite journal |last1=Goodacre |first1=Royston |last2=Kell |first2=Douglas B |title=Pyrolysis mass spectrometry and its applications in biotechnology |journal=Current Opinion in Biotechnology |date=February 1996 |volume=7 |issue=1 |pages=20–28 |doi=10.1016/S0958-1669(96)80090-5 |pmid=8791308 }}</ref><ref>{{cite journal |last1=Peacock |first1=Patricia M. |last2=McEwen |first2=Charles N. |title=Mass Spectrometry of Synthetic Polymers |journal=Analytical Chemistry |date=1 June 2006 |volume=78 |issue=12 |pages=3957–3964 |doi=10.1021/ac0606249 |pmid=16771534 }}</ref> ===Machine learning=== In recent years, machine learning has attracted significant research interest in predicting yields, optimizing parameters, and monitoring pyrolytic processes.<ref>{{cite journal |last1=Wang |first1=Zhengxin |last2=Peng |first2=Xinggan |last3=Xia |first3=Ao |last4=Shah |first4=Akeel A. |last5=Huang |first5=Yun |last6=Zhu |first6=Xianqing |last7=Zhu |first7=Xun |last8=Liao |first8=Qiang |title=The role of machine learning to boost the bioenergy and biofuels conversion |journal=Bioresource Technology |date=January 2022 |volume=343 |pages=126099 |doi=10.1016/j.biortech.2021.126099 |pmid=34626766 |bibcode=2022BiTec.34326099W }}</ref><ref>{{cite journal |last1=Akinpelu |first1=David Akorede |last2=Adekoya |first2=Oluwaseun A. |last3=Oladoye |first3=Peter Olusakin |last4=Ogbaga |first4=Chukwuma C. |last5=Okolie |first5=Jude A. |title=Machine learning applications in biomass pyrolysis: From biorefinery to end-of-life product management |journal=Digital Chemical Engineering |date=September 2023 |volume=8 |page=100103 |doi=10.1016/j.dche.2023.100103 |doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)