Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quantum field theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Other spacetimes==== The {{math|''ϕ''<sup>4</sup>}} theory, QED, QCD, as well as the whole Standard Model all assume a (3+1)-dimensional [[Minkowski space]] (3 spatial and 1 time dimensions) as the background on which the quantum fields are defined. However, QFT ''a priori'' imposes no restriction on the number of dimensions nor the geometry of spacetime. In [[condensed matter physics]], QFT is used to describe [[two-dimensional electron gas|(2+1)-dimensional electron gases]].<ref>{{cite book |last1=Morandi |first1=G. |last2=Sodano |first2=P. |last3=Tagliacozzo |first3=A. |last4=Tognetti |first4=V. |date=2000 |title=Field Theories for Low-Dimensional Condensed Matter Systems |url=https://www.springer.com/us/book/9783540671770 |publisher=Springer |isbn=978-3-662-04273-1 }}</ref> In [[high-energy physics]], [[string theory]] is a type of (1+1)-dimensional QFT,{{r|zee|page1=452}}<ref name="polchinski1" /> while [[Kaluza–Klein theory]] uses gravity in [[extra dimensions]] to produce gauge theories in lower dimensions.{{r|zee|page1=428–429}} In Minkowski space, the flat [[metric tensor (general relativity)|metric]] {{math|''η<sub>μν</sub>''}} is used to [[raising and lowering indices|raise and lower]] spacetime indices in the Lagrangian, ''e.g.'' :<math>A_\mu A^\mu = \eta_{\mu\nu} A^\mu A^\nu,\quad \partial_\mu\phi \partial^\mu\phi = \eta^{\mu\nu}\partial_\mu\phi \partial_\nu\phi,</math> where {{math|''η<sup>μν</sup>''}} is the inverse of {{math|''η<sub>μν</sub>''}} satisfying {{math|''η<sup>μρ</sup>η<sub>ρν</sub>'' {{=}} ''δ<sup>μ</sup><sub>ν</sub>''}}. For [[quantum field theory in curved spacetime|QFTs in curved spacetime]] on the other hand, a general metric (such as the [[Schwarzschild metric]] describing a [[black hole]]) is used: :<math>A_\mu A^\mu = g_{\mu\nu} A^\mu A^\nu,\quad \partial_\mu\phi \partial^\mu\phi = g^{\mu\nu}\partial_\mu\phi \partial_\nu\phi,</math> where {{math|''g<sup>μν</sup>''}} is the inverse of {{math|''g<sub>μν</sub>''}}. For a real scalar field, the Lagrangian density in a general spacetime background is :<math>\mathcal{L} = \sqrt{|g|}\left(\frac 12 g^{\mu\nu} \nabla_\mu\phi \nabla_\nu\phi - \frac 12 m^2\phi^2\right),</math> where {{math|''g'' {{=}} det(''g<sub>μν</sub>'')}}, and {{math|∇<sub>''μ''</sub>}} denotes the [[covariant derivative]].<ref>{{cite book |last1=Parker |first1=Leonard E. |last2=Toms |first2=David J. |date=2009 |title=Quantum Field Theory in Curved Spacetime |url=https://archive.org/details/quantumfieldtheo00park |url-access=limited |publisher=Cambridge University Press |page=[https://archive.org/details/quantumfieldtheo00park/page/n58 43] |isbn=978-0-521-87787-9 }}</ref> The Lagrangian of a QFT, hence its calculational results and physical predictions, depends on the geometry of the spacetime background.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)