Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Functions of a quaternion variable== {{Main|Quaternionic analysis}} [[File:Quaternion Julia x=-0,75 y=-0,14.jpg|thumb|The Julia sets and Mandelbrot sets can be extended to the Quaternions, but they must use cross sections to be rendered visually in 3 dimensions. This Julia set is cross sectioned at the {{mvar|x y}} plane.]] Like functions of a [[complex variable]], functions of a quaternion variable suggest useful physical models. For example, the original electric and magnetic fields described by Maxwell were functions of a quaternion variable. Examples of other functions include the extension of the [[Mandelbrot set]] and [[Julia set]]s into 4-dimensional space.<ref>{{cite web |title=[no title cited] |website=bridgesmathart.org |series=archive |url=http://archive.bridgesmathart.org/2010/bridges2010-247.pdf |access-date=19 August 2018}}</ref> ===Exponential, logarithm, and power functions=== Given a quaternion, <math display=block> q = a + b\,\mathbf i + c\,\mathbf j + d\,\mathbf k = a + \mathbf{v}, </math> the exponential is computed as<ref name=Särkkä2007>{{cite web |url=http://www.lce.hut.fi/~ssarkka/pub/quat.pdf |website=Lce.hut.fi |title=Notes on Quaternions |first=Simo |last=Särkkä |date=June 28, 2007 |archive-url=https://web.archive.org/web/20170705123142/http://www.lce.hut.fi/~ssarkka/pub/quat.pdf |archive-date=5 July 2017}}</ref> <math display=block> \exp(q) = \sum_{n=0}^\infty \frac{q^n}{n!} = e^{a} \left(\cos \|\mathbf{v}\| + \frac{\mathbf{v}}{\|\mathbf{v}\|} \sin \|\mathbf{v}\|\right), </math> and the logarithm is<ref name=Särkkä2007/> <math display=block>\ln(q) = \ln \|q\| + \frac{\mathbf{v}}{\|\mathbf{v}\|} \arccos \frac{a}{\|q\|}.</math> It follows that the polar decomposition of a quaternion may be written <math display=block>q=\|q\|e^{\hat{n}\varphi} = \|q\| \left(\cos(\varphi) + \hat{n} \sin(\varphi)\right),</math> where the [[angle]] <math>\varphi</math>{{efn|name="θ"|Books on applied mathematics, such as Corke (2017)<ref>{{cite book |title=Robotics, Vision, and Control – Fundamental Algorithms in MATLAB |last=Corke |first=Peter |publisher=[[Springer Publishing|Springer]] |year=2017 |isbn=978-3-319-54413-7}}</ref> often use different notation with {{math|''φ'' :{{=}} {{sfrac|1|2}}''θ''}} — that is, [[change of variables|another variable]] {{math|''θ'' {{=}} 2''φ''}}.}} <math display=block>a = \| q \| \cos( \varphi )</math> and the unit vector <math>\hat{n}</math> is defined by: <math display=block>\mathbf{v} = \hat{n} \|\mathbf{v}\|= \hat{n}\|q\|\sin(\varphi).</math> Any unit quaternion may be expressed in polar form as: <math display=block>q=\exp{(\hat{n}\varphi)}.</math> The [[Power (mathematics)|power]] of a quaternion raised to an arbitrary (real) exponent {{mvar|x}} is given by: <math display=block>q^x = \|q\|^x e^{\hat{n} x \varphi} = \|q\|^x \left(\cos(x\varphi) + \hat{n}\,\sin(x\varphi)\right).</math> ===Geodesic norm=== The [[Great-circle distance|geodesic distance]] {{nowrap|{{math|''d''<sub>g</sub>(''p'', ''q'')}}}} between unit quaternions {{mvar|p}} and {{mvar|q}} is defined as:<ref name=Geodesic>{{cite journal |last1=Park |first1=F.C. |last2=Ravani |first2=Bahram |title=Smooth invariant interpolation of rotations |journal=ACM Transactions on Graphics |date=1997 |volume=16 |number=3 |pages=277–295 |doi=10.1145/256157.256160|s2cid=6192031 |doi-access=free }}</ref> <math display=block>d_\text{g}(p, q) = \lVert \ln(p^{-1} q) \rVert.</math> and amounts to the absolute value of half the angle subtended by {{mvar|p}} and {{mvar|q}} along a [[Arc (geometry)|great arc]] of the {{math|S<sup>3</sup>}} sphere. This angle can also be computed from the quaternion [[dot product]] without the logarithm as: <math display=block>d_\text{g}(p, q) = \arccos(2(p \cdot q)^2 - 1).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)