Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Rotation matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Nested dimensions === A {{nowrap|3 × 3}} rotation matrix such as :<math>Q_{3 \times 3} = \begin{bmatrix} \cos \theta & -\sin \theta & {\color{CadetBlue}0} \\ \sin \theta & \cos \theta & {\color{CadetBlue}0} \\ {\color{CadetBlue}0} & {\color{CadetBlue}0} & {\color{CadetBlue}1} \end{bmatrix}</math> suggests a {{nowrap|2 × 2}} rotation matrix, :<math>Q_{2 \times 2} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, </math> is embedded in the upper left corner: :<math>Q_{3 \times 3} = \left[ \begin{matrix} Q_{2 \times 2} & \mathbf{0} \\ \mathbf{0}^\mathsf{T} & 1 \end{matrix} \right].</math> This is no illusion; not just one, but many, copies of {{mvar|n}}-dimensional rotations are found within {{math|(''n'' + 1)}}-dimensional rotations, as [[subgroup]]s. Each embedding leaves one direction fixed, which in the case of {{nowrap|3 × 3}} matrices is the rotation axis. For example, we have :<math>\begin{align} Q_{\mathbf{x}}(\theta) &= \begin{bmatrix} {\color{CadetBlue}1} & {\color{CadetBlue}0} & {\color{CadetBlue}0} \\ {\color{CadetBlue}0} & \cos \theta & -\sin \theta \\ {\color{CadetBlue}0} & \sin \theta & \cos \theta \end{bmatrix}, \\[8px] Q_{\mathbf{y}}(\theta) &= \begin{bmatrix} \cos \theta & {\color{CadetBlue}0} & \sin \theta \\ {\color{CadetBlue}0} & {\color{CadetBlue}1} & {\color{CadetBlue}0} \\ -\sin \theta & {\color{CadetBlue}0} & \cos \theta \end{bmatrix}, \\[8px] Q_{\mathbf{z}}(\theta) &= \begin{bmatrix} \cos \theta & -\sin \theta & {\color{CadetBlue}0} \\ \sin \theta & \cos \theta & {\color{CadetBlue}0} \\ {\color{CadetBlue}0} & {\color{CadetBlue}0} & {\color{CadetBlue}1} \end{bmatrix}, \end{align}</math> fixing the {{mvar|x}}-axis, the {{mvar|y}}-axis, and the {{mvar|z}}-axis, respectively. The rotation axis need not be a coordinate axis; if {{math|'''u''' {{=}} (''x'',''y'',''z'')}} is a unit vector in the desired direction, then :<math>\begin{align} Q_\mathbf{u}(\theta) &= \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} \sin\theta + \left(I - \mathbf{u}\mathbf{u}^\mathsf{T}\right) \cos\theta + \mathbf{u}\mathbf{u}^\mathsf{T} \\[8px] &= \begin{bmatrix} \left(1 - x^2\right) c_\theta + x^2 & -z s_\theta - x y c_\theta + x y & y s_\theta - x z c_\theta + x z \\ z s_\theta - x y c_\theta + x y & \left(1 - y^2\right) c_\theta + y^2 & -x s_\theta - y z c_\theta + y z \\ -y s_\theta - x z c_\theta + x z & x s_\theta - y z c_\theta + y z & \left(1 - z^2\right) c_\theta + z^2 \end{bmatrix} \\[8px] &= \begin{bmatrix} x^2 (1 - c_\theta) + c_\theta & x y (1 - c_\theta) - z s_\theta & x z (1 - c_\theta) + y s_\theta \\ x y (1 - c_\theta) + z s_\theta & y^2 (1 - c_\theta) + c_\theta & y z (1 - c_\theta) - x s_\theta \\ x z (1 - c_\theta) - y s_\theta & y z (1 - c_\theta) + x s_\theta & z^2 (1 - c_\theta) + c_\theta \end{bmatrix}, \end{align}</math> where {{math|''c<sub>θ</sub>'' {{=}} cos ''θ''}}, {{math|''s<sub>θ</sub>'' {{=}} sin ''θ''}}, is a rotation by angle {{mvar|θ}} leaving axis {{math|'''u'''}} fixed. A direction in {{math|(''n'' + 1)}}-dimensional space will be a unit magnitude vector, which we may consider a point on a generalized sphere, {{math|''S''<sup>''n''</sup>}}. Thus it is natural to describe the rotation group {{math|SO(''n'' + 1)}} as combining {{math|SO(''n'')}} and {{math|''S''<sup>''n''</sup>}}. A suitable formalism is the [[fiber bundle]], :<math>SO(n) \hookrightarrow SO(n + 1) \to S^n ,</math> where for every direction in the base space, {{math|''S''<sup>''n''</sup>}}, the fiber over it in the total space, {{math|SO(''n'' + 1)}}, is a copy of the fiber space, {{math|SO(''n'')}}, namely the rotations that keep that direction fixed. Thus we can build an {{math|''n'' × ''n''}} rotation matrix by starting with a {{nowrap|2 × 2}} matrix, aiming its fixed axis on {{math|''S''<sup>2</sup>}} (the ordinary sphere in three-dimensional space), aiming the resulting rotation on {{math|''S''<sup>3</sup>}}, and so on up through {{math|''S''<sup>''n''−1</sup>}}. A point on {{math|''S''<sup>''n''</sup>}} can be selected using {{mvar|n}} numbers, so we again have {{math|{{sfrac|1|2}}''n''(''n'' − 1)}} numbers to describe any {{math|''n'' × ''n''}} rotation matrix. In fact, we can view the sequential angle decomposition, discussed previously, as reversing this process. The composition of {{math|''n'' − 1}} Givens rotations brings the first column (and row) to {{nowrap|(1, 0, ..., 0)}}, so that the remainder of the matrix is a rotation matrix of dimension one less, embedded so as to leave {{nowrap|(1, 0, ..., 0)}} fixed.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)