Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Convention and notation in case of a thermal distribution === In most of stellar dynamics literature, it is convenient to adopt the convention that the particle mass is unity in solar mass unit <math> M_\odot</math>, hence a particle's momentum and velocity are identical, i.e., <math display="block"> \mathbf{p} = m \mathbf{v} = \mathbf{v}, ~ m=1, ~ N_\text{total} = M_\text{total},</math> <math display="block"> {dM \over dx^3 dv^3} = f(\mathbf{x},\mathbf{v},t) = f(\mathbf{x},\mathbf{p},t) \equiv {dN \over dx^3 dp^3} </math> For example, the thermal velocity distribution of air molecules (of typically 15 times the proton mass per molecule) in a room of constant temperature <math> T_0 \sim \mathrm{300K} </math> would have a [[Maxwell distribution]] <math display="block"> f^\text{Max}(x,y,z,m V_x,m V_y,m V_z) = {1 \over (2\pi \hbar)^3} {1 \over \exp\left({E(x,y,z,p_x,p_y,p_z) - \mu \over kT_0}\right) + 1 } </math> <math display="block"> f^\text{Max} \sim {1 \over (2\pi \hbar/m)^3} e^{\mu \over kT_0 } e^ {-E \over m\sigma_1^2}, </math> where the energy per unit mass <math display="block"> E/m = \Phi(x,y,z) + (V_x^2 + V_y^2 + V_z^2)/2, </math> where <math>\Phi(x,y,z) \equiv g_0 z = 0</math> and <math display="inline"> \sigma_1 =\sqrt{k T_0/m} \sim \mathrm{0.3km/s}</math> is the width of the velocity Maxwell distribution, identical in each direction and everywhere in the room, and the normalisation constant <math> e^{\mu \over kT_0} </math> (assume the chemical potential <math display="inline">\mu \sim (m\sigma_1^2) \ln\left[n_0 \left({\sqrt{2\pi}\hbar \over m \sigma_1}\right)^3\right] \ll 0 </math> such that the Fermi-Dirac distribution reduces to a Maxwell velocity distribution) is fixed by the constant gas number density <math>n_0 = n(x,y,0) </math> at the floor level, where <math display="block"> n(x,y,0) = \!\! \int_{-\infty}^\infty m dV_x \!\! \int_{-\infty}^\infty m dV_y \!\! \int_{-\infty}^\infty m dV_z f(x,y,0,mV_x,mV_y,mV_z) </math> <math display="block"> n \approx {(2\pi)^{3/2} (m\sigma_1)^3 \over (2\pi \hbar)^3} e^{\mu \over m \sigma_1^2}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)