Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Angular momentum
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Uncertainty === In the definition <math>\mathbf{L}=\mathbf{r}\times\mathbf{p}</math>, six operators are involved: The [[position operator]]s <math>r_x</math>, <math>r_y</math>, <math>r_z</math>, and the [[momentum operator]]s <math>p_x</math>, <math>p_y</math>, <math>p_z</math>. However, the [[uncertainty principle|Heisenberg uncertainty principle]] tells us that it is not possible for all six of these quantities to be known simultaneously with arbitrary precision. Therefore, there are limits to what can be known or measured about a particle's angular momentum. It turns out that the best that one can do is to simultaneously measure both the angular momentum vector's [[magnitude (vector)|magnitude]] and its component along one axis. The uncertainty is closely related to the fact that different components of an angular momentum operator do not [[commutator|commute]], for example <math>L_xL_y \neq L_yL_x</math>. (For the precise [[commutation relation]]s, see [[angular momentum operator]].)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)