Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Argumentation theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Artificial intelligence == {{See also|Argument technology|Argument mapping|Argumentation framework}} [[File:Intelligent assistant for argumentative support and arguments inquiry.png|thumb|Structured debates from platforms like [[Kialo]] could be used for "artificial deliberative agents" (ADAs) or computational reasoning.<ref name="10.1145/3469595.3469615">{{cite book |last1=Anastasiou |first1=Lucas |last2=De Liddo |first2=Anna |title=Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems |chapter=Making Sense of Online Discussions: Can Automated Reports help? |date=8 May 2021 |pages=1–7 |doi=10.1145/3411763.3451815 |publisher=Association for Computing Machinery|isbn=9781450380959 |s2cid=233987842 }}</ref><ref name="Betz">{{cite journal |last1=Betz |first1=Gregor |title=Natural-Language Multi-Agent Simulations of Argumentative Opinion Dynamics |journal=Journal of Artificial Societies and Social Simulation |pages=2 |doi=10.18564/jasss.4725 |date=2022|volume=25 |arxiv=2104.06737 |s2cid=233231231 }}</ref>]] [[File:Basic design of artificial deliberative agents (ADAs) for argumentation.png|thumb|Example of an ADA contributing missing information to a debate via crawled Kialo data and selected based [[natural language processing|on the prior conversation]] and crawled [[Kialo#collective determination of argument weights|argument weight ratings]]<ref name="Betz"/>]] Efforts have been made within the field of [[artificial intelligence]] to perform and analyze argumentation with computers. Argumentation has been used to provide a proof-theoretic [[semantics]] for [[non-monotonic logic]], starting with the influential work of Dung (1995). Computational argumentation systems have found particular application in domains where formal logic and classical [[decision theory]] are unable to capture the richness of reasoning, domains such as law and medicine. In ''Elements of Argumentation'', Philippe Besnard and Anthony Hunter show how classical logic-based techniques can be used to capture key elements of practical argumentation.<ref>{{cite book |last1=Besnard |first1=Philippe |last2=Hunter |first2=Anthony |date=2008 |title=Elements of Argumentation |location=Cambridge, MA |publisher=[[MIT Press]] |isbn=9780262026437 |oclc=163605008 |doi=10.7551/mitpress/9780262026437.001.0001}} Reviewed in: {{cite journal|last1=Lundström|first1=Jenny Eriksson|title=Book Reviews: Elements of Argumentation|journal=Studia Logica|date=11 September 2009|volume=93|issue=1|pages=97–103|doi=10.1007/s11225-009-9204-3|s2cid=3214194}}</ref> Within computer science, the ArgMAS workshop series (Argumentation in Multi-Agent Systems), the CMNA workshop series,<ref>{{cite web |title=Computational Models of Natural Argument |url=https://cmna.csc.liv.ac.uk/ |website=cmna.csc.liv.ac.uk}}</ref> and the COMMA Conference,<ref>{{cite web |title=Computational Models of Argument |url=https://intranet.csc.liv.ac.uk/~comma/ |website=intranet.csc.liv.ac.uk}}</ref> are regular annual events attracting participants from every continent. The journal ''Argument & Computation''<ref>{{cite web |title=Argument & Computation |url=https://www.iospress.com/catalog/journals/argument-computation |website=www.iospress.com|date=August 2023 }}</ref> is dedicated to exploring the intersection between argumentation and computer science. ArgMining is a workshop series dedicated specifically to the related [[argument mining]] task.<ref>{{cite web|url=https://research.ibm.com/haifa/Workshops/argmining18/|title=5th Workshop on Argument Mining|date=2011-05-17|website=www.research.ibm.com}}</ref> Data from the collaborative structured online argumentation platform [[Kialo]] has been used to train and to evaluate [[natural language processing]] AI systems such as, most commonly, [[BERT (language model)|BERT]] and its variants.{{refn|name=NLPapplic|<ref name="10.1145/3485447.3512144">{{cite book |last1=Agarwal |first1=Vibhor |last2=Joglekar |first2=Sagar |last3=Young |first3=Anthony P. |last4=Sastry |first4=Nishanth |title=Proceedings of the ACM Web Conference 2022 |chapter=GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates |date=25 April 2022 |pages=2729–2737 |doi=10.1145/3485447.3512144|arxiv=2202.08175 |isbn=9781450390965 |s2cid=246867079 }}</ref><ref>{{cite book |last1=Prakken |first1=H. |last2=Bistarelli |first2=S. |last3=Santini |first3=F. |title=Computational Models of Argument: Proceedings of COMMA 2020 |date=25 September 2020 |publisher=IOS Press |isbn=978-1-64368-107-8 |url=https://books.google.com/books?id=I6EGEAAAQBAJ |language=en}}</ref><ref name="conclusion">{{cite arXiv |title=Conclusion-based Counter-Argument Generation |eprint=2301.09911 |last1=Alshomary |first1=Milad |last2=Wachsmuth |first2=Henning |year=2023 |class=cs.CL }}</ref><ref>{{cite journal |last1=Thorburn |first1=Luke |last2=Kruger |first2=Ariel |title=Optimizing Language Models for Argumentative Reasoning |date=2022 |url=https://ceur-ws.org/Vol-3208/paper3.pdf}}</ref><ref name="Revise"/><ref name="Durmus">{{cite book |last1=Durmus |first1=Esin |last2=Ladhak |first2=Faisal |last3=Cardie |first3=Claire |title=Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics |chapter=Determining Relative Argument Specificity and Stance for Complex Argumentative Structures |pages=4630–4641 |doi=10.18653/v1/P19-1456 |date=2019|arxiv=1906.11313 |s2cid=195699602 }}</ref><ref name="Bolton">{{cite arXiv |title=High Quality Real-Time Structured Debate Generation |eprint=2012.00209 |last1=Bolton |first1=Eric |last2=Calderwood |first2=Alex |last3=Christensen |first3=Niles |last4=Kafrouni |first4=Jerome |last5=Drori |first5=Iddo |year=2020 |class=cs.CL }}</ref><ref>{{cite journal |last1=Jo |first1=Yohan |last2=Bang |first2=Seojin |last3=Reed |first3=Chris |last4=Hovy |first4=Eduard |title=Classifying Argumentative Relations Using Logical Mechanisms and Argumentation Schemes |journal=Transactions of the Association for Computational Linguistics |date=2 August 2021 |volume=9 |pages=721–739 |doi=10.1162/tacl_a_00394|s2cid=234742133 |arxiv=2105.07571 }}</ref><ref name="impactrating">{{cite book |last1=Durmus |first1=Esin |last2=Ladhak |first2=Faisal |last3=Cardie |first3=Claire |title=Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |chapter=The Role of Pragmatic and Discourse Context in Determining Argument Impact |pages=5667–5677 |doi=10.18653/v1/D19-1568 |date=2019|arxiv=2004.03034 |s2cid=202768765 }}</ref><ref name="Khatib">{{cite book |last1=Al Khatib |first1=Khalid |last2=Trautner |first2=Lukas |last3=Wachsmuth |first3=Henning |last4=Hou |first4=Yufang |last5=Stein |first5=Benno |chapter=Employing Argumentation Knowledge Graphs for Neural Argument Generation |title=Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) |date=August 2021 |pages=4744–4754 |doi=10.18653/v1/2021.acl-long.366 |chapter-url=https://aclanthology.org/2021.acl-long.366.pdf |publisher=Association for Computational Linguistics|s2cid=236460348 }}</ref>}} This includes argument extraction, conclusion generation,<ref name="conclusion"/>{{additional citation needed|date=June 2023}} argument form quality assessment,<ref name="Skitalinskaya">{{cite arXiv |title=Learning From Revisions: Quality Assessment of Claims in Argumentation at Scale |eprint=2101.10250 |last1=Skitalinskaya |first1=Gabriella |last2=Klaff |first2=Jonas |last3=Wachsmuth |first3=Henning |year=2021 |class=cs.CL }} The study investigates revisions of the same argument for machine learning of general style quality assessment.</ref> machine argumentative debate generation or participation,<ref name="Bolton"/><ref name="impactrating"/><ref name="Khatib"/> surfacing most relevant previously overlooked viewpoints or arguments,<ref name="Bolton"/><ref name="impactrating"/> argumentative writing support<ref name="Revise">{{cite arXiv |title=To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support |eprint=2305.16799 |last1=Skitalinskaya |first1=Gabriella |last2=Wachsmuth |first2=Henning |year=2023 |class=cs.CL }}</ref> (including sentence attackability scores),<ref name="Detecting"/> automatic real-time evaluation of how truthful or convincing a sentence is (similar to [[fact-checking]]),<ref name="Detecting">{{cite arXiv |title=Detecting Attackable Sentences in Arguments |eprint=2010.02660 |last1=Jo |first1=Yohan |last2=Bang |first2=Seojin |last3=Manzoor |first3=Emaad |last4=Hovy |first4=Eduard |last5=Reed |first5=Chris |year=2020 |class=cs.CL }}</ref> [[Fine-tuning (machine learning)|language model fine tuning]]<ref>{{cite book |last1=Fanton |first1=Margherita |last2=Bonaldi |first2=Helena |last3=Tekiroglu |first3=Serra Sinem |last4=Guerini |first4=Marco |title=Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) |chapter=Human-in-the-Loop for Data Collection: a Multi-Target Counter Narrative Dataset to Fight Online Hate Speech |pages=3226–3240 |doi=10.18653/v1/2021.acl-long.250 |date=2021|arxiv=2107.08720 |s2cid=236087808 }}</ref><ref name="Khatib"/> (including for [[chatbot]]s),<ref>{{cite journal |last1=Björklin |first1=Hampus |last2=Abrahamsson |first2=Tim |last3=Widenfalk |first3=Oscar |title=A retrieval-based chatbot's opinion on the trolley problem |date=2021 |url=https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1571401}}</ref><ref>{{cite arXiv |title=Opening up Minds with Argumentative Dialogues |eprint=2301.06400 |last1=Farag |first1=Youmna |last2=Brand |first2=Charlotte O. |last3=Amidei |first3=Jacopo |last4=Piwek |first4=Paul |last5=Stafford |first5=Tom |last6=Stoyanchev |first6=Svetlana |last7=Vlachos |first7=Andreas |year=2023 |class=cs.CL }}</ref> argument impact prediction, argument classification and polarity prediction.<ref name="graphbased">{{cite journal |last1=Agarwal |first1=Vibhor |last2=P. Young |first2=Anthony |last3=Joglekar |first3=Sagar |last4=Sastry |first4=Nishanth |title=A Graph-Based Context-Aware Model to Understand Online Conversations |journal=ACM Transactions on the Web |year=2024 |volume=18 |pages=1–27 |doi=10.1145/3624579 |arxiv=2211.09207 }}</ref><ref>{{cite journal |title=Towards an Argument Mining Pipeline Transforming Texts to Argument Graphs |doi=10.3233/FAIA200510 |arxiv=2006.04562 |last1=Lenz |first1=Mirko |last2=Sahitaj |first2=Premtim |last3=Kallenberg |first3=Sean |last4=Coors |first4=Christopher |last5=Dumani |first5=Lorik |last6=Schenkel |first6=Ralf |last7=Bergmann |first7=Ralph |year=2020 |pages=263–270 |publisher=IOS Press |s2cid=219531343 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)