Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brouwer fixed-point theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===A proof using oriented area=== A variation of the preceding proof does not employ the Sard's theorem, and goes as follows. If <math>r\colon B\to \partial B</math> is a smooth retraction, one considers the smooth deformation <math>g^t(x):=t r(x)+(1-t)x,</math> and the smooth function :<math>\varphi(t):=\int_B \det D g^t(x) \, dx.</math> Differentiating under the sign of integral it is not difficult to check that ''{{prime|Ο}}''(''t'') = 0 for all ''t'', so ''Ο'' is a constant function, which is a contradiction because ''Ο''(0) is the ''n''-dimensional volume of the ball, while ''Ο''(1) is zero. The geometric idea is that ''Ο''(''t'') is the oriented area of ''g''<sup>''t''</sup>(''B'') (that is, the Lebesgue measure of the image of the ball via ''g''<sup>''t''</sup>, taking into account multiplicity and orientation), and should remain constant (as it is very clear in the one-dimensional case). On the other hand, as the parameter ''t'' passes from 0 to 1 the map ''g''<sup>''t''</sup> transforms continuously from the identity map of the ball, to the retraction ''r'', which is a contradiction since the oriented area of the identity coincides with the volume of the ball, while the oriented area of ''r'' is necessarily 0, as its image is the boundary of the ball, a set of null measure.<ref>{{harvnb|Kulpa|1989}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)