Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cholesky decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proof for positive semi-definite matrices == === Proof by limiting argument === The above algorithms show that every positive definite matrix <math display=inline> \mathbf{A} </math> has a Cholesky decomposition. This result can be extended to the positive semi-definite case by a limiting argument. The argument is not fully constructive, i.e., it gives no explicit numerical algorithms for computing Cholesky factors. If <math display=inline> \mathbf{A} </math> is an <math display=inline> n \times n </math> [[Positive-definite matrix|positive semi-definite matrix]], then the sequence <math display="inline"> \left(\mathbf{A}_k\right)_k := \left(\mathbf{A} + \frac{1}{k} \mathbf{I}_n\right)_k </math> consists of [[Positive-definite matrix|positive definite matrices]]. (This is an immediate consequence of, for example, the spectral mapping theorem for the polynomial functional calculus.) Also, <math display=block> \mathbf{A}_k \rightarrow \mathbf{A} \quad \text{for} \quad k \rightarrow \infty </math> in [[operator norm]]. From the positive definite case, each <math display=inline> \mathbf{A}_k </math> has Cholesky decomposition <math display=inline> \mathbf{A}_k = \mathbf{L}_k\mathbf{L}_k^* </math>. By property of the operator norm, <math display=block>\| \mathbf{L}_k \|^2 \leq \| \mathbf{L}_k \mathbf{L}_k^* \| = \| \mathbf{A}_k \| \,.</math> The <math display=inline>\leq</math> holds because <math display=inline>M_n(\mathbb{C})</math> equipped with the operator norm is a C* algebra. So <math display=inline> \left(\mathbf{L}_k \right)_k</math> is a bounded set in the [[Banach space]] of operators, therefore [[relatively compact]] (because the underlying vector space is finite-dimensional). Consequently, it has a convergent subsequence, also denoted by <math display=inline> \left( \mathbf{L}_k \right)_k</math>, with limit <math display=inline> \mathbf{L}</math>. It can be easily checked that this <math display=inline> \mathbf{L}</math> has the desired properties, i.e. <math display=inline> \mathbf{A} = \mathbf{L}\mathbf{L}^* </math>, and <math display=inline> \mathbf{L}</math> is lower triangular with non-negative diagonal entries: for all <math display=inline> x</math> and <math display=inline> y</math>, <math display=block> \langle \mathbf{A} x, y \rangle = \left\langle \lim \mathbf{A}_k x, y \right\rangle = \langle \lim \mathbf{L}_k \mathbf{L}_k^* x, y \rangle = \langle \mathbf{L} \mathbf{L}^*x, y \rangle \,. </math> Therefore, <math display=inline> \mathbf{A} = \mathbf{L}\mathbf{L}^* </math>. Because the underlying vector space is finite-dimensional, all topologies on the space of operators are equivalent. So <math display=inline> \left( \mathbf{L}_k \right)_k</math> tends to <math display=inline> \mathbf{L}</math> in norm means <math display=inline> \left( \mathbf{L}_k \right)_k</math> tends to <math display=inline> \mathbf{L}</math> entrywise. This in turn implies that, since each <math display=inline> \mathbf{L}_k</math> is lower triangular with non-negative diagonal entries, <math display=inline> \mathbf{L}</math> is also. === Proof by QR decomposition === Let <math display=inline>\mathbf{A}</math> be a [[Positive-definite matrix|positive semi-definite]] Hermitian matrix. Then it can be written as a product of its [[Square root of a matrix|square root matrix]], <math display=inline>\mathbf{A} = \mathbf{B} \mathbf{B}^*</math>. Now [[QR decomposition]] can be applied to <math display=inline>\mathbf{B}^*</math>, resulting in <math display=inline>\mathbf{B}^* = \mathbf{Q}\mathbf{R}</math> , where <math display=inline>\mathbf{Q}</math> is unitary and <math display=inline>\mathbf{R}</math> is upper triangular. Inserting the decomposition into the original equality yields <math display=inline>A = \mathbf{B} \mathbf{B}^* = (\mathbf{QR})^*\mathbf{QR} = \mathbf{R}^*\mathbf{Q}^*\mathbf{QR} = \mathbf{R}^*\mathbf{R}</math>. Setting <math display=inline>\mathbf{L} = \mathbf{R}^*</math> completes the proof.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)