Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Covering space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Deck transformation == === Definition === Let <math>p:E \rightarrow X</math> be a covering. A '''deck transformation''' is a homeomorphism <math>d:E \rightarrow E</math>, such that the diagram of continuous maps [[File:Diagramm_Decktrafo.png|center|frameless]] commutes. Together with the composition of maps, the set of deck transformation forms a [[Group (mathematics)|group]] <math>\operatorname{Deck}(p)</math>, which is the same as <math>\operatorname{Aut}(p)</math>. Now suppose <math>p:C \to X</math> is a covering map and <math>C</math> (and therefore also <math>X</math>) is connected and locally path connected. The action of <math>\operatorname{Aut}(p)</math> on each fiber is [[Group action (mathematics)#Notable properties of actions|free]]. If this action is [[Group action (mathematics)#Remarkable properties of actions|transitive]] on some fiber, then it is transitive on all fibers, and we call the cover '''regular''' (or '''normal''' or '''Galois'''). Every such regular cover is a [[principal bundle|principal {{nowrap|<math>G</math>-bundle}}]], where <math>G = \operatorname{Aut}(p)</math> is considered as a discrete topological group. Every universal cover <math>p:D \to X </math> is regular, with deck transformation group being isomorphic to the [[fundamental group]] {{nowrap|<math>\pi_1(X)</math>.}} === Examples === * Let <math>q : S^1 \to S^1</math> be the covering <math>q(z)=z^{n}</math> for some <math>n \in \mathbb{N} </math>, then the map <math>d_k:S^1 \rightarrow S^1 : z \mapsto z \, e^{2\pi ik/n} </math> for <math>k \in \mathbb{Z}</math> is a deck transformation and <math>\operatorname{Deck}(q)\cong \mathbb{Z}/ n\mathbb{Z}</math>. * Let <math>r : \mathbb{R} \to S^1</math> be the covering <math>r(t)=(\cos(2 \pi t), \sin(2 \pi t))</math>, then the map <math>d_k:\mathbb{R} \rightarrow \mathbb{R} : t \mapsto t + k</math> for <math>k \in \mathbb{Z}</math> is a deck transformation and <math>\operatorname{Deck}(r)\cong \mathbb{Z}</math>. * As another important example, consider <math>\Complex</math> the complex plane and <math>\Complex^{\times}</math> the complex plane minus the origin. Then the map <math>p: \Complex^{\times} \to \Complex^{\times}</math> with <math> p(z) = z^{n} </math> is a regular cover. The deck transformations are multiplications with <math>n</math>-th [[root of unity|roots of unity]] and the deck transformation group is therefore isomorphic to the [[cyclic group]] <math>\Z/n\Z</math>. Likewise, the map <math>\exp : \Complex \to \Complex^{\times}</math> with <math>\exp(z) = e^{z}</math> is the universal cover. === Properties === Let <math>X</math> be a path-connected space and <math>p:E \rightarrow X</math> be a connected covering. Since a deck transformation <math>d:E \rightarrow E</math> is [[Bijection|bijective]], it permutes the elements of a fiber <math>p^{-1}(x)</math> with <math>x \in X</math> and is uniquely determined by where it sends a single point. In particular, only the identity map fixes a point in the fiber.{{r|Hatcher|p=70}} Because of this property every deck transformation defines a [[group action]] on <math>E</math>, i.e. let <math>U \subset X</math> be an open neighborhood of a <math>x \in X</math> and <math>\tilde U \subset E</math> an open neighborhood of an <math>e \in p^{-1}(x)</math>, then <math>\operatorname{Deck}(p) \times E \rightarrow E: (d,\tilde U)\mapsto d(\tilde U)</math> is a [[group action]]. === Normal coverings === ==== Definition ==== A covering <math>p:E \rightarrow X</math> is called normal, if <math>\operatorname{Deck}(p) \backslash E \cong X</math>. This means, that for every <math>x \in X</math> and any two <math>e_0,e_1 \in p^{-1}(x)</math> there exists a deck transformation <math>d:E \rightarrow E</math>, such that <math>d(e_0)=e_1</math>. ==== Properties ==== Let <math>X</math> be a path-connected space and <math>p:E \rightarrow X</math> be a connected covering. Let <math>H=p_{\#}(\pi_1(E))</math> be a [[subgroup]] of <math>\pi_1(X)</math>, then <math>p</math> is a normal covering iff <math>H</math> is a [[normal subgroup]] of <math>\pi_1(X)</math>. If <math>p:E \rightarrow X</math> is a normal covering and <math>H=p_{\#}(\pi_1(E))</math>, then <math>\operatorname{Deck}(p) \cong \pi_1(X)/H</math>. If <math>p:E \rightarrow X</math> is a path-connected covering and <math>H=p_{\#}(\pi_1(E))</math>, then <math>\operatorname{Deck}(p) \cong N(H)/H</math>, whereby <math>N(H)</math> is the [[normaliser]] of <math>H</math>.{{r|Hatcher|p=71}} Let <math>E</math> be a topological space. A group <math>\Gamma</math> acts ''discontinuously'' on <math>E</math>, if every <math>e \in E</math> has an open neighborhood <math>V \subset E</math> with <math>V \neq \empty</math>, such that for every <math>d_1, d_2 \in \Gamma </math> with <math>d_1 V \cap d_2 V \neq \empty </math> one has <math>d_1 = d_2</math>. If a group <math>\Gamma</math> acts discontinuously on a topological space <math>E</math>, then the [[quotient map (topology)|quotient map]] <math>q: E \rightarrow \Gamma \backslash E </math> with <math>q(e)=\Gamma e</math> is a normal covering.{{r|Hatcher|p=72}} Hereby <math>\Gamma \backslash E = \{\Gamma e: e \in E\}</math> is the [[Quotient space (topology)|quotient space]] and <math>\Gamma e = \{\gamma(e):\gamma \in \Gamma\}</math> is the [[Orbit (group theory)|orbit]] of the group action. ==== Examples ==== * The covering <math>q : S^1 \to S^1 </math> with <math>q(z)=z^{n}</math> is a normal coverings for every <math>n \in \mathbb{N}</math>. * Every simply connected covering is a normal covering. === Calculation === Let <math>\Gamma</math> be a group, which acts discontinuously on a topological space <math>E</math> and let <math>q: E \rightarrow \Gamma \backslash E </math> be the normal covering. * If <math>E</math> is path-connected, then <math>\operatorname{Deck}(q) \cong \Gamma</math>.{{r|Hatcher|p=72}} * If <math>E</math> is simply connected, then <math>\operatorname{Deck}(q)\cong \pi_1(\Gamma \backslash E)</math>.{{r|Hatcher|p=71}} ==== Examples ==== * Let <math>n \in \mathbb{N}</math>. The antipodal map <math>g:S^n \rightarrow S^n</math> with <math>g(x)=-x</math> generates, together with the composition of maps, a group <math>D(g) \cong \mathbb{Z/2Z}</math> and induces a group action <math>D(g) \times S^n \rightarrow S^n, (g,x)\mapsto g(x)</math>, which acts discontinuously on <math>S^n</math>. Because of <math>\mathbb{Z_2} \backslash S^n \cong \mathbb{R}P^n</math> it follows, that the quotient map <math>q : S^n \rightarrow \mathbb{Z_2}\backslash S^n \cong \mathbb{R}P^n</math> is a normal covering and for <math>n > 1</math> a universal covering, hence <math>\operatorname{Deck}(q)\cong \mathbb{Z/2Z}\cong \pi_1({\mathbb{R}P^n})</math> for <math>n > 1</math>. * Let <math>\mathrm{SO}(3)</math> be the [[special orthogonal group]], then the map <math>f : \mathrm{SU}(2) \rightarrow \mathrm{SO}(3) \cong \mathbb{Z_2} \backslash \mathrm{SU}(2)</math> is a normal covering and because of <math>\mathrm{SU}(2) \cong S^3</math>, it is the universal covering, hence <math>\operatorname{Deck}(f) \cong \mathbb{Z/2Z} \cong \pi_1(\mathrm{SO}(3))</math>. * With the group action <math>(z_1,z_2)*(x,y)=(z_1+(-1)^{z_2}x,z_2+y)</math> of <math>\mathbb{Z^2}</math> on <math>\mathbb{R^2}</math>, whereby <math>(\mathbb{Z^2},*)</math> is the [[semidirect product]] <math>\mathbb{Z} \rtimes \mathbb{Z} </math>, one gets the universal covering <math>f: \mathbb{R^2} \rightarrow (\mathbb{Z} \rtimes \mathbb{Z}) \backslash \mathbb{R^2} \cong K </math> of the [[klein bottle]] <math>K</math>, hence <math>\operatorname{Deck}(f) \cong \mathbb{Z} \rtimes \mathbb{Z} \cong \pi_1(K)</math>. * Let <math>T = S^1 \times S^1</math> be the [[Torus#Topology|torus]] which is embedded in the <math>\mathbb{C^2}</math>. Then one gets a homeomorphism <math>\alpha: T \rightarrow T: (e^{ix},e^{iy}) \mapsto (e^{i(x+\pi)},e^{-iy})</math>, which induces a discontinuous group action <math>G_{\alpha} \times T \rightarrow T</math>, whereby <math>G_{\alpha} \cong \mathbb{Z/2Z}</math>. It follows, that the map <math>f: T \rightarrow G_{\alpha} \backslash T \cong K</math> is a normal covering of the klein bottle, hence <math>\operatorname{Deck}(f) \cong \mathbb{Z/2Z}</math>. * Let <math>S^3</math> be embedded in the <math>\mathbb{C^2}</math>. Since the group action <math>S^3 \times \mathbb{Z/pZ} \rightarrow S^3: ((z_1,z_2),[k]) \mapsto (e^{2 \pi i k/p}z_1,e^{2 \pi i k q/p}z_2)</math> is discontinuously, whereby <math>p,q \in \mathbb{N}</math> are [[Coprime integers|coprime]], the map <math>f:S^3 \rightarrow \mathbb{Z_p} \backslash S^3 =: L_{p,q}</math> is the universal covering of the [[lens space]] <math>L_{p,q}</math>, hence <math>\operatorname{Deck}(f) \cong \mathbb{Z/pZ} \cong \pi_1(L_{p,q})</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)