Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Curvilinear coordinates
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Differentiation=== The expressions for the gradient, divergence, and Laplacian can be directly extended to ''n''-dimensions, however the curl is only defined in 3D. The vector field '''b'''<sub>''i''</sub> is tangent to the ''q<sup>i</sup>'' coordinate curve and forms a '''natural basis''' at each point on the curve. This basis, as discussed at the beginning of this article, is also called the '''covariant''' curvilinear basis. We can also define a '''reciprocal basis''', or '''contravariant''' curvilinear basis, '''b'''<sup>''i''</sup>. All the algebraic relations between the basis vectors, as discussed in the section on tensor algebra, apply for the natural basis and its reciprocal at each point '''x'''. :{| class="wikitable" |- !scope=col width="10px"| Operator !scope=col width="200px"| Scalar field !scope=col width="200px"| Vector field !scope=col width="200px"| 2nd order tensor field |- | [[Gradient]] || <math> \nabla\varphi = \cfrac{1}{h_i}{\partial\varphi \over \partial q^i} \mathbf{b}^i </math> || <math>\nabla\mathbf{v} = \cfrac{1}{h_i^2}{\partial \mathbf{v} \over \partial q^i}\otimes\mathbf{b}_i </math> || <math>\boldsymbol{\nabla}\boldsymbol{S} = \cfrac{\partial \boldsymbol{S}}{\partial q^i}\otimes\mathbf{b}^i</math> |- | [[Divergence]] || N/A || <math> \nabla \cdot \mathbf{v} = \cfrac{1}{\prod_j h_j} \frac{\partial }{\partial q^i}(v^i\prod_{j\ne i} h_j) </math> || <math> (\boldsymbol{\nabla}\cdot\boldsymbol{S})\cdot\mathbf{a} = \boldsymbol{\nabla}\cdot(\boldsymbol{S}\cdot\mathbf{a}) </math> where '''a''' is an arbitrary constant vector. In curvilinear coordinates, <math>\boldsymbol{\nabla}\cdot\boldsymbol{S} = \left[\cfrac{\partial S_{ij}}{\partial q^k} - \Gamma^l_{ki}S_{lj} - \Gamma^l_{kj}S_{il}\right]g^{ik}\mathbf{b}^j </math> |- | [[Laplacian]] ||<math> \nabla^2 \varphi = \cfrac{1}{\prod _j h_j}\frac{\partial }{\partial q^i}\left(\cfrac{\prod _j h_j}{h_i^2}\frac{\partial \varphi}{\partial q^i}\right) </math> || <math> \nabla^2 \mathbf{v} \equiv \nabla \nabla\cdot \mathbf{v} - \nabla \times \nabla \times \mathbf{v} </math> <math>~~~ = \hat{\mathbf{x}}\nabla^2 v_x + \hat{\mathbf{y}}\nabla^2 v_y + \hat{\mathbf{z}}\nabla^2 v_z</math> (First equality in 3D only; second equality in Cartesian components only) || |- | [[Curl (mathematics)|Curl]] || N/A || For vector fields in 3D only, <math> \nabla\times\mathbf{v} = \frac{1}{h_1h_2h_3} \mathbf{e}_i \epsilon_{ijk} h_i \frac{\partial (h_k v_k)}{\partial q^j} </math> where <math>\epsilon_{ijk}</math> is the [[Levi-Civita symbol]]. || See [[Tensor derivative (continuum mechanics)#Curl of a tensor field|''Curl of a tensor field'']] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)