Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exterior algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Functoriality == Suppose that <math>V</math> and <math>W</math> are a pair of vector spaces and <math>f : V \to W</math> is a [[linear map]]. Then, by the universal property, there exists a unique homomorphism of graded algebras : <math>{\textstyle\bigwedge}(f) : {\textstyle\bigwedge}(V)\rightarrow {\textstyle\bigwedge}(W)</math> such that : <math> {\textstyle\bigwedge}(f)\left|_{{\textstyle\bigwedge}^{\!1}(V)}\right. = f : V={\textstyle\bigwedge}^{\!1}(V)\rightarrow W={\textstyle\bigwedge}^{\!1}(W). </math> In particular, <math>{\textstyle\bigwedge}(f)</math> preserves homogeneous degree. The {{math|''k''}}-graded components of <math display=inline> \bigwedge\left(f\right) </math> are given on decomposable elements by : <math> {\textstyle\bigwedge}(f)(x_1 \wedge \cdots \wedge x_k) = f(x_1) \wedge \cdots \wedge f(x_k). </math> Let : <math> {\textstyle\bigwedge}^{\!k}(f) = {\textstyle\bigwedge} (f)\left|_{{\textstyle\bigwedge}^{\!k}(V)}\right. : {\textstyle\bigwedge}^{\!k}(V) \rightarrow {\textstyle\bigwedge}^{\!k}(W). </math> The components of the transformation {{tmath|{\textstyle\bigwedge}^{\!k}(f)}} relative to a basis of <math>V</math> and <math>W</math> is the matrix of <math>k \times k</math> minors of {{tmath|f}}. In particular, if <math>V = W</math> and <math>V</math> is of finite dimension {{tmath|n}}, then <math>{\textstyle\bigwedge}^{\!n}(f) </math> is a mapping of a one-dimensional vector space <math>{\textstyle\bigwedge}^{\!n}(V)</math> to itself, and is therefore given by a scalar: the [[determinant]] of {{tmath|f}}. === Exactness === If <math> 0 \to U \to V \to W \to 0 </math> is a [[short exact sequence]] of vector spaces, then : <math> 0 \to {\textstyle\bigwedge}^{\!1}(U) \wedge {\textstyle\bigwedge}(V) \to {\textstyle\bigwedge}(V) \to {\textstyle\bigwedge}(W) \to 0 </math> is an exact sequence of graded vector spaces,<ref>This part of the statement also holds in greater generality if <math>V</math> and <math>W</math> are modules over a commutative ring: That <math>{\textstyle\bigwedge}</math> converts epimorphisms to epimorphisms. See {{harvtxt|Bourbaki|1989|loc=Proposition 3, §III.7.2}}.</ref> as is : <math>0 \to {\textstyle\bigwedge}(U) \to {\textstyle\bigwedge}(V). </math><ref>This statement generalizes only to the case where {{math|''V''}} and {{math|''W''}} are projective modules over a commutative ring. Otherwise, it is generally not the case that <math>{\textstyle\bigwedge}</math> converts monomorphisms to monomorphisms. See {{harvtxt|Bourbaki|1989|loc=Corollary to Proposition 12, §III.7.9}}.</ref> === Direct sums === In particular, the exterior algebra of a direct sum is isomorphic to the tensor product of the exterior algebras: : <math> {\textstyle\bigwedge}(V \oplus W) \cong {\textstyle\bigwedge}(V) \otimes {\textstyle\bigwedge}(W). </math> This is a graded isomorphism; i.e., : <math> {\textstyle\bigwedge}^{\!k}(V \oplus W) \cong \bigoplus_{p+q=k} {\textstyle\bigwedge}^{\!p}(V) \otimes {\textstyle\bigwedge}^{\!q}(W). </math> In greater generality, for a short exact sequence of vector spaces <math display=inline> 0 \to U \mathrel{\overset{f}\to} V \mathrel{\overset{g}\to} W \to 0, </math> there is a natural [[Filtration (mathematics)|filtration]] : <math> 0 = F^0 \subseteq F^1 \subseteq \cdots \subseteq F^k \subseteq F^{k+1} = {\textstyle\bigwedge}^{\!k}(V) </math> where <math> F^p </math> for <math> p \geq 1 </math> is spanned by elements of the form <math> u_1 \wedge \ldots \wedge u_{k + 1-p} \wedge v_1 \wedge \ldots v_{p - 1} </math> for <math> u_i \in U </math> and <math> v_i \in V. </math> The corresponding quotients admit a natural isomorphism : <math> F^{p+1}/F^p \cong {\textstyle\bigwedge}^{\!k-p}(U) \otimes {\textstyle\bigwedge}^{\!p}(W) </math> given by <math> u_1 \wedge \ldots \wedge u_{k -p} \wedge v_1 \wedge \ldots \wedge v_{p} \mapsto u_1 \wedge \ldots \wedge u_{k-p} \otimes g(v_1) \wedge \ldots \wedge g(v_{p}). </math> In particular, if ''U'' is 1-dimensional then : <math> 0 \to U \otimes {\textstyle\bigwedge}^{\!k-1}(W) \to {\textstyle\bigwedge}^{\!k}(V) \to {\textstyle\bigwedge}^{\!k}(W) \to 0 </math> is exact, and if ''W'' is 1-dimensional then : <math> 0 \to {\textstyle\bigwedge}^k(U) \to {\textstyle\bigwedge}^{\!k}(V) \to {\textstyle\bigwedge}^{\!k-1}(U) \otimes W \to 0 </math> is exact.<ref>Such a filtration also holds for [[vector bundle]]s, and projective modules over a commutative ring. This is thus more general than the result quoted above for direct sums, since not every short exact sequence splits in other [[abelian category|abelian categories]].</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)