Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Fibonacci sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Primes and divisibility == === Divisibility properties === Every third number of the sequence is even (a multiple of <math>F_3=2</math>) and, more generally, every {{mvar|k}}-th number of the sequence is a multiple of ''F<sub>k</sub>''. Thus the Fibonacci sequence is an example of a [[divisibility sequence]]. In fact, the Fibonacci sequence satisfies the stronger divisibility property<ref>{{Citation | first = Paulo | last = Ribenboim | author-link = Paulo Ribenboim | title = My Numbers, My Friends | publisher = Springer-Verlag | year = 2000}}</ref><ref>{{Citation | last1 = Su | first1 = Francis E | others = et al | publisher = HMC | url = http://www.math.hmc.edu/funfacts/ffiles/20004.5.shtml | contribution = Fibonacci GCD's, please | year = 2000 | title = Mudd Math Fun Facts | access-date = 2007-02-23 | archive-url = https://web.archive.org/web/20091214092739/http://www.math.hmc.edu/funfacts/ffiles/20004.5.shtml | archive-date = 2009-12-14 | url-status = dead }}</ref> <math display=block>\gcd(F_a,F_b,F_c,\ldots) = F_{\gcd(a,b,c,\ldots)}\,</math> where {{math|gcd}} is the [[greatest common divisor]] function. (This relation is different if a different indexing convention is used, such as the one that starts the sequence with {{tmath|1=F_0 = 1}} and {{tmath|1=F_1 = 1}}.) In particular, any three consecutive Fibonacci numbers are pairwise [[Coprime integers|coprime]] because both <math>F_1=1</math> and <math>F_2 = 1</math>. That is, : <math>\gcd(F_n, F_{n+1}) = \gcd(F_n, F_{n+2}) = \gcd(F_{n+1}, F_{n+2}) = 1</math> for every {{mvar|n}}. Every [[prime number]] {{mvar|p}} divides a Fibonacci number that can be determined by the value of {{mvar|p}} [[modular arithmetic|modulo]] 5. If {{mvar|p}} is congruent to 1 or 4 modulo 5, then {{mvar|p}} divides {{math|''F''<sub>''p''−1</sub>}}, and if {{mvar|p}} is congruent to 2 or 3 modulo 5, then, {{mvar|p}} divides {{math|''F''<sub>''p''+1</sub>}}. The remaining case is that {{math|1=''p'' = 5}}, and in this case {{mvar|p}} divides ''F<sub>p</sub>''. <math display=block>\begin{cases} p =5 & \Rightarrow p \mid F_{p}, \\ p \equiv \pm1 \pmod 5 & \Rightarrow p \mid F_{p-1}, \\ p \equiv \pm2 \pmod 5 & \Rightarrow p \mid F_{p+1}.\end{cases}</math> These cases can be combined into a single, non-[[piecewise]] formula, using the [[Legendre symbol]]:<ref>{{citation | last = Williams | first = H. C. | doi = 10.4153/CMB-1982-053-0 | doi-access=free | issue = 3 | journal = [[Canadian Mathematical Bulletin]] | mr = 668957 | pages = 366–70 | title = A note on the Fibonacci quotient <math>F_{p-\varepsilon}/p</math> | volume = 25 | year = 1982| hdl = 10338.dmlcz/137492 | hdl-access = free }}. Williams calls this property "well known".</ref> <math display=block>p \mid F_{p \;-\, \left(\frac{5}{p}\right)}.</math> === Primality testing === The above formula can be used as a [[primality test]] in the sense that if <math display=block>n \mid F_{n \;-\, \left(\frac{5}{n}\right)},</math> where the Legendre symbol has been replaced by the [[Jacobi symbol]], then this is evidence that {{mvar|n}} is a prime, and if it fails to hold, then {{mvar|n}} is definitely not a prime. If {{mvar|n}} is [[composite number|composite]] and satisfies the formula, then {{mvar|n}} is a ''Fibonacci pseudoprime''. When {{mvar|m}} is large{{snd}}say a 500-[[bit]] number{{snd}}then we can calculate {{math|''F''<sub>''m''</sub> (mod ''n'')}} efficiently using the matrix form. Thus <math display=block> \begin{pmatrix} F_{m+1} & F_m \\ F_m & F_{m-1} \end{pmatrix} \equiv \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^m \pmod n.</math> Here the matrix power {{math|''A''<sup>''m''</sup>}} is calculated using [[modular exponentiation]], which can be [[Modular exponentiation#Matrices|adapted to matrices]].<ref>''Prime Numbers'', Richard Crandall, Carl Pomerance, Springer, second edition, 2005, p. 142.</ref> === Fibonacci primes === {{Main|Fibonacci prime}} A ''Fibonacci prime'' is a Fibonacci number that is [[prime number|prime]]. The first few are:<ref>{{Cite OEIS|1=A005478|2=Prime Fibonacci numbers|mode=cs2}}</ref> : 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many.<ref>{{citation | last = Diaconis | first = Persi | author-link = Persi Diaconis | editor1-last = Butler | editor1-first = Steve | editor1-link = Steve Butler (mathematician) | editor2-last = Cooper | editor2-first = Joshua | editor3-last = Hurlbert | editor3-first = Glenn | contribution = Probabilizing Fibonacci numbers | contribution-url = https://statweb.stanford.edu/~cgates/PERSI/papers/probabilizing-fibonacci.pdf | isbn = 978-1-107-15398-1 | mr = 3821829 | pages = 1–12 | publisher = Cambridge University Press | title = Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham | year = 2018 | access-date = 2022-11-23 | archive-date = 2023-11-18 | archive-url = https://web.archive.org/web/20231118192225/https://statweb.stanford.edu/~cgates/PERSI/papers/probabilizing-fibonacci.pdf | url-status = dead }}</ref> {{math|''F''<sub>''kn''</sub>}} is divisible by {{math|''F''<sub>''n''</sub>}}, so, apart from {{math|1=''F''<sub>4</sub> = 3}}, any Fibonacci prime must have a prime index. As there are [[Arbitrarily large|arbitrarily long]] runs of [[composite number]]s, there are therefore also arbitrarily long runs of composite Fibonacci numbers. No Fibonacci number greater than {{math|1=''F''<sub>6</sub> = 8}} is one greater or one less than a prime number.<ref>{{Citation | first = Ross | last = Honsberger | title = Mathematical Gems III | journal = AMS Dolciani Mathematical Expositions | year = 1985 | isbn = 978-0-88385-318-4 | page = 133 | issue = 9}}</ref> The only nontrivial [[square number|square]] Fibonacci number is 144.<ref>{{citation | last = Cohn | first = J. H. E. | doi = 10.1112/jlms/s1-39.1.537 | journal = The Journal of the London Mathematical Society | mr = 163867 | pages = 537–540 | title = On square Fibonacci numbers | volume = 39 | year = 1964}}</ref> Attila Pethő proved in 2001 that there is only a finite number of [[perfect power]] Fibonacci numbers.<ref>{{Citation | first = Attila | last = Pethő | title = Diophantine properties of linear recursive sequences II | journal = Acta Mathematica Academiae Paedagogicae Nyíregyháziensis | volume = 17 | year = 2001 | pages = 81–96}}</ref> In 2006, Y. Bugeaud, M. Mignotte, and S. Siksek proved that 8 and 144 are the only such non-trivial perfect powers.<ref>{{Citation|first1=Y|last1=Bugeaud|first2=M|last2= Mignotte|first3=S|last3=Siksek|title = Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers | journal = Ann. Math.|volume = 2 | year = 2006 | pages = 969–1018 | issue = 163 | bibcode = 2004math......3046B | arxiv = math/0403046| doi = 10.4007/annals.2006.163.969|s2cid=10266596}}</ref> 1, 3, 21, and 55 are the only [[triangular number|triangular]] Fibonacci numbers, which was [[conjecture]]d by [[Verner Emil Hoggatt Jr.|Vern Hoggatt]] and proved by Luo Ming.<ref>{{Citation|first=Ming|last=Luo|title = On triangular Fibonacci numbers | journal = Fibonacci Quart. | volume = 27 | issue = 2 | year = 1989 | pages = 98–108 |doi=10.1080/00150517.1989.12429576 | url = https://www.fq.math.ca/Scanned/27-2/ming.pdf }}</ref> No Fibonacci number can be a [[perfect number]].<ref name="Luca2000">{{citation | first=Florian | last=Luca | title=Perfect Fibonacci and Lucas numbers | journal=Rendiconti del Circolo Matematico di Palermo | year=2000 | volume=49 | issue=2 | pages=313–18 | doi=10.1007/BF02904236 | mr=1765401 | s2cid=121789033 | issn=1973-4409 }}</ref> More generally, no Fibonacci number other than 1 can be [[multiply perfect number|multiply perfect]],<ref name="BGLLHT2011">{{citation | first1=Kevin A. | last1=Broughan | first2=Marcos J. | last2=González | first3=Ryan H. | last3=Lewis | first4=Florian | last4=Luca | first5=V. Janitzio | last5=Mejía Huguet | first6=Alain | last6=Togbé | title=There are no multiply-perfect Fibonacci numbers | journal=Integers | year=2011 | volume=11a | page=A7 | url=https://math.colgate.edu/~integers/vol11a.html | mr=2988067 }}</ref> and no ratio of two Fibonacci numbers can be perfect.<ref name="LucaMH2010">{{citation | first1=Florian | last1=Luca | first2= V. Janitzio | last2=Mejía Huguet | title=On Perfect numbers which are ratios of two Fibonacci numbers | journal=Annales Mathematicae at Informaticae | year=2010 | volume=37 | pages=107–24 | url=http://ami.ektf.hu/index.php?vol=37 | mr=2753031 | issn=1787-6117 }}</ref> === Prime divisors === With the exceptions of 1, 8 and 144 ({{math|1=''F''<sub>1</sub> = ''F''<sub>2</sub>}}, {{math|''F''<sub>6</sub>}} and {{math|''F''<sub>12</sub>}}) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number ([[Carmichael's theorem]]).<ref>{{Citation | first = Ron | last = Knott | url = http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibtable.html | title = The Fibonacci numbers | publisher = Surrey | place = UK}}</ref> As a result, 8 and 144 ({{math|''F''<sub>6</sub>}} and {{math|''F''<sub>12</sub>}}) are the only Fibonacci numbers that are the product of other Fibonacci numbers.<ref>{{Cite OEIS|1=A235383|2=Fibonacci numbers that are the product of other Fibonacci numbers|mode=cs2}}</ref> The divisibility of Fibonacci numbers by a prime {{mvar|p}} is related to the [[Legendre symbol]] <math>\bigl(\tfrac{p}{5}\bigr)</math> which is evaluated as follows: <math display=block>\left(\frac{p}{5}\right) = \begin{cases} 0 & \text{if } p = 5\\ 1 & \text{if } p \equiv \pm 1 \pmod 5\\ -1 & \text{if } p \equiv \pm 2 \pmod 5.\end{cases}</math> If {{mvar|p}} is a prime number then <math display=block> F_p \equiv \left(\frac{p}{5}\right) \pmod p \quad \text{and}\quad F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod p.</math><ref>{{Citation | first = Paulo | last = Ribenboim | author-link = Paulo Ribenboim | year = 1996 | title = The New Book of Prime Number Records | place = New York | publisher = Springer | isbn = 978-0-387-94457-9 | page = 64}}</ref>{{Sfn | Lemmermeyer | 2000 | loc = ex. 2.25–28 | pp = 73–74}} For example, <math display=block>\begin{align} \bigl(\tfrac{2}{5}\bigr) &= -1, &F_3 &= 2, &F_2&=1, \\ \bigl(\tfrac{3}{5}\bigr) &= -1, &F_4 &= 3,&F_3&=2, \\ \bigl(\tfrac{5}{5}\bigr) &= 0, &F_5 &= 5, \\ \bigl(\tfrac{7}{5}\bigr) &= -1, &F_8 &= 21,&F_7&=13, \\ \bigl(\tfrac{11}{5}\bigr)& = +1, &F_{10}& = 55, &F_{11}&=89. \end{align}</math> It is not known whether there exists a prime {{mvar|p}} such that <math display=block>F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod{p^2}.</math> Such primes (if there are any) would be called [[Wall–Sun–Sun prime]]s. Also, if {{math|''p'' ≠ 5}} is an odd prime number then:{{Sfn | Lemmermeyer | 2000 | loc = ex. 2.28 | pp = 73–74}} <math display=block>5 {F_{\frac{p \pm 1}{2}}}^2 \equiv \begin{cases} \tfrac{1}{2} \left (5\bigl(\tfrac{p}{5}\bigr)\pm 5 \right ) \pmod p & \text{if } p \equiv 1 \pmod 4\\ \tfrac{1}{2} \left (5\bigl(\tfrac{p}{5}\bigr)\mp 3 \right ) \pmod p & \text{if } p \equiv 3 \pmod 4. \end{cases}</math> '''Example 1.''' {{math|1=''p'' = 7}}, in this case {{math|1=''p'' ≡ 3 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{7}{5}\bigr) = -1: \qquad \tfrac{1}{2}\left(5 \bigl(\tfrac{7}{5}\bigr)+3 \right ) =-1, \quad \tfrac{1}{2} \left(5\bigl(\tfrac{7}{5}\bigr)-3 \right )=-4.</math> <math display=block>F_3=2 \text{ and } F_4=3.</math> <math display=block>5{F_3}^2=20\equiv -1 \pmod {7}\;\;\text{ and }\;\;5{F_4}^2=45\equiv -4 \pmod {7}</math> '''Example 2.''' {{math|1=''p'' = 11}}, in this case {{math|1=''p'' ≡ 3 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{11}{5}\bigr) = +1: \qquad \tfrac{1}{2}\left( 5\bigl(\tfrac{11}{5}\bigr)+3 \right)=4, \quad \tfrac{1}{2} \left(5\bigl(\tfrac{11}{5}\bigr)- 3 \right)=1.</math> <math display=block>F_5=5 \text{ and } F_6=8.</math> <math display=block>5{F_5}^2=125\equiv 4 \pmod {11} \;\;\text{ and }\;\;5{F_6}^2=320\equiv 1 \pmod {11}</math> '''Example 3.''' {{math|1=''p'' = 13}}, in this case {{math|1=''p'' ≡ 1 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{13}{5}\bigr) = -1: \qquad \tfrac{1}{2}\left(5\bigl(\tfrac{13}{5}\bigr)-5 \right) =-5, \quad \tfrac{1}{2}\left(5\bigl(\tfrac{13}{5}\bigr)+ 5 \right)=0.</math> <math display=block>F_6=8 \text{ and } F_7=13.</math> <math display=block>5{F_6}^2=320\equiv -5 \pmod {13} \;\;\text{ and }\;\;5{F_7}^2=845\equiv 0 \pmod {13}</math> '''Example 4.''' {{math|1=''p'' = 29}}, in this case {{math|1=''p'' ≡ 1 (mod 4)}} and we have: <math display=block>\bigl(\tfrac{29}{5}\bigr) = +1: \qquad \tfrac{1}{2}\left(5\bigl(\tfrac{29}{5}\bigr)-5 \right)=0, \quad \tfrac{1}{2}\left(5\bigl(\tfrac{29}{5}\bigr)+5 \right)=5.</math> <math display=block>F_{14}=377 \text{ and } F_{15}=610.</math> <math display=block>5{F_{14}}^2=710645\equiv 0 \pmod {29} \;\;\text{ and }\;\;5{F_{15}}^2=1860500\equiv 5 \pmod {29}</math> For odd {{mvar|n}}, all odd prime divisors of {{math|''F''<sub>''n''</sub>}} are congruent to 1 modulo 4, implying that all odd divisors of {{math|1=''F''<sub>''n''</sub>}} (as the products of odd prime divisors) are congruent to 1 modulo 4.{{Sfn | Lemmermeyer | 2000 | loc = ex. 2.27 | p = 73}} For example, <math display=block>F_1 = 1,\ F_3 = 2,\ F_5 = 5,\ F_7 = 13,\ F_9 = {\color{Red}34} = 2 \cdot 17,\ F_{11} = 89,\ F_{13} = 233,\ F_{15} = {\color{Red}610} = 2 \cdot 5 \cdot 61.</math> All known factors of Fibonacci numbers {{math|''F''(''i'')}} for all {{math|''i'' < 50000}} are collected at the relevant repositories.<ref>{{Citation | url = https://mersennus.net/fibonacci/ | title = Fibonacci and Lucas factorizations | publisher = Mersennus}} collects all known factors of {{math|''F''(''i'')}} with {{math|''i'' < 10000}}.</ref><ref>{{Citation | url =http://fibonacci.redgolpe.com/ | title = Factors of Fibonacci and Lucas numbers | publisher = Red golpe}} collects all known factors of {{math|''F''(''i'')}} with {{math|10000 < ''i'' < 50000}}.</ref> === Periodicity modulo ''n'' === {{Main|Pisano period}} If the members of the Fibonacci sequence are taken mod {{mvar|n}}, the resulting sequence is [[periodic sequence|periodic]] with period at most {{math|6''n''}}.<ref>{{Citation | title = Problems and Solutions: Solutions: E3410 | last1 = Freyd | first1 = Peter | last2 = Brown | first2 = Kevin S. | journal = The American Mathematical Monthly | volume = 99 | issue = 3 | pages = 278–79 |date= 1993 | doi=10.2307/2325076| jstor = 2325076 }}</ref> The lengths of the periods for various {{mvar|n}} form the so-called [[Pisano period]]s.<ref>{{Cite OEIS|1=A001175|2=Pisano periods (or Pisano numbers): period of Fibonacci numbers mod n|mode=cs2}}</ref> Determining a general formula for the Pisano periods is an [[open problem]], which includes as a subproblem a special instance of the problem of finding the [[multiplicative order]] of a [[modular arithmetic|modular integer]] or of an element in a [[finite field]]. However, for any particular {{mvar|n}}, the Pisano period may be found as an instance of [[cycle detection]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)