Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integration over log-gamma === The integral <math display="block"> \int_0^z \operatorname{log\Gamma} (x) \, dx</math> can be expressed in terms of the [[Barnes G-function|Barnes {{math|''G''}}-function]]<ref name="Alexejewsky">{{cite journal|first=W. P. |last=Alexejewsky |title=Über eine Classe von Funktionen, die der Gammafunktion analog sind |trans-title=On a class of functions analogous to the gamma function |journal=Leipzig Weidmannsche Buchhandlung |volume=46 |date=1894 |pages=268–275}}</ref><ref name="Barnes">{{cite journal|first=E. W. |last=Barnes |title=The theory of the ''G''-function |journal=Quart. J. Math. |volume=31 |date=1899 |pages=264–314}}</ref> (see [[Barnes G-function|Barnes {{math|''G''}}-function]] for a proof): <math display="block">\int_0^z \operatorname{log\Gamma}(x) \, dx = \frac{z}{2} \log (2 \pi) + \frac{z(1-z)}{2} + z \operatorname{log\Gamma}(z) - \log G(z+1)</math> where {{math|Re(''z'') > −1}}. It can also be written in terms of the [[Hurwitz zeta function]]:<ref name="Adamchik">{{cite journal|first=Victor S. |last=Adamchik |title=Polygamma functions of negative order |journal=J. Comput. Appl. Math. |volume=100 |issue=2 |date=1998 |pages=191–199 |doi=10.1016/S0377-0427(98)00192-7|doi-access=free }}</ref><ref name="Gosper">{{cite journal|first=R. W. |last=Gosper |title=<math>\textstyle \int_{n/4}^{m/6} \log F(z) \,dz</math> in special functions, ''q''-series and related topics |journal=J. Am. Math. Soc. |volume=14 |date=1997}}</ref> <math display="block">\int_0^z \operatorname{log\Gamma}(x) \, dx = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} - \zeta'(-1) + \zeta'(-1,z) .</math> When <math>z=1</math> it follows that <math display="block"> \int_0^1 \operatorname{log\Gamma}(x) \, dx = \frac 1 2 \log(2\pi), </math> and this is a consequence of [[Raabe's formula]] as well. O. Espinosa and V. Moll derived a similar formula for the integral of the square of <math>\operatorname{log\Gamma}</math>:<ref name="EspinosaMoll">{{cite journal|first1=Olivier |last1=Espinosa|first2=Victor H. |last2=Moll|title= On Some Integrals Involving the Hurwitz Zeta Function: Part 1|journal=The Ramanujan Journal |volume=6 |date=2002 |issue=2|pages=159–188 |doi=10.1023/A:1015706300169|s2cid=128246166}}</ref> <math display="block">\int_{0}^{1} \log ^{2} \Gamma(x) d x=\frac{\gamma^{2}}{12}+\frac{\pi^{2}}{48}+\frac{1}{3} \gamma L_{1}+\frac{4}{3} L_{1}^{2}-\left(\gamma+2 L_{1}\right) \frac{\zeta^{\prime}(2)}{\pi^{2}}+\frac{\zeta^{\prime \prime}(2)}{2 \pi^{2}},</math> where <math>L_1</math> is <math>\frac12\log(2\pi)</math>. D. H. Bailey and his co-authors<ref name="Bailey">{{cite journal|first1=David H. |last1=Bailey|first2=David |last2=Borwein|first3=Jonathan M.|last3=Borwein|title= On Eulerian log-gamma integrals and Tornheim-Witten zeta functions|journal=The Ramanujan Journal |volume=36 |date=2015 |issue=1–2|pages=43–68 |doi=10.1007/s11139-012-9427-1|s2cid=7335291}}</ref> gave an evaluation for <math display="block">L_n:=\int_0^1 \log^n \Gamma(x) \, dx</math> when <math>n=1,2</math> in terms of the Tornheim–Witten zeta function and its derivatives. In addition, it is also known that<ref name="ACEKNM">{{cite journal|first1=T. |last1=Amdeberhan|first2=Mark W.|last2=Coffey|first3=Olivier|last3=Espinosa|first4=Christoph|last4=Koutschan|first5=Dante V.|last5=Manna|first6=Victor H.|last6=Moll|title= Integrals of powers of loggamma|journal=Proc. Amer. Math. Soc.|volume=139|issue=2 |date=2011 |pages=535–545 |doi=10.1090/S0002-9939-2010-10589-0|doi-access=free}}</ref> <math display="block"> \lim_{n\to\infty} \frac{L_n}{n!}=1. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)