Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Helmholtz decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Notes == {{Reflist|30em|refs= <ref name="amrouche1998">Cherif Amrouche, [[Christine Bernardi]], [[Monique Dauge]], [[Vivette Girault]]: ''Vector potentials in three dimensional non-smooth domains''. In: ''[[Mathematical Methods in the Applied Sciences]]'' 21(9), 1998, pp. 823–864, {{doi|10.1002/(sici)1099-1476(199806)21:9<823::aid-mma976>3.0.co;2-b}}, {{bibcode|1998MMAS...21..823A }}.</ref> <ref name="axler1992">Sheldon Axler, Paul Bourdon, Wade Ramey: ''Bounded Harmonic Functions''. In: ''Harmonic Function Theory'' (= Graduate Texts in Mathematics 137). Springer, New York 1992, pp. 31–44, {{doi|10.1007/0-387-21527-1_2}}.</ref> <ref name="bhatia2013">Harsh Bhatia, Gregory Norgard, Valerio Pascucci, Peer-Timo Bremer: ''The Helmholtz-Hodge Decomposition – A Survey''. In: ''[[Institute of Electrical and Electronics Engineers|IEEE]] Transactions on Visualization and Computer Graphics'' 19.8, 2013, pp. 1386–1404, {{doi|10.1109/tvcg.2012.316}}.</ref> <ref name="bhatia2014">Hersh Bhatia, Valerio Pascucci, Peer-Timo Bremer: ''The Natural Helmholtz-Hodge Decomposition for Open-Boundary Flow Analysis''. In: ''[[Institute of Electrical and Electronics Engineers|IEEE]] Transactions on Visualization and Computer Graphics'' 20.11, Nov. 2014, pp. 1566–1578, Nov. 2014, {{doi|10.1109/TVCG.2014.2312012}}.</ref> <!-- <ref name="bladel1958">Jean Bladel: ''On Helmholtz's Theorem in Finite Regions''. Midwestern Universities Research Association, 1958.</ref> --> <ref name="blumenthal1905">[[Otto Blumenthal]]: ''Über die Zerlegung unendlicher Vektorfelder''. In: ''[[Mathematische Annalen]]'' 61.2, 1905, pp. 235–250, {{doi|10.1007/BF01457564}}.</ref> <ref name="cantarella2002">{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> <ref name="cauchy1823">{{cite book|author-link =Augustin-Louis Cauchy|first=Augustin-Louis|last = Cauchy|chapter=Trente-Cinquième Leçon|title=Résumé des leçons données à l'École royale polytechnique sur le calcul infinitésimal|publisher= Imprimerie Royale|location= Paris|date= 1823|pages= 133–140 |url=https://gallica.bnf.fr/ark:/12148/bpt6k62404287/f146.item |language = fr}}</ref> <ref name="chorin1990">Alexandre J. Chorin, Jerrold E. Marsden: ''A Mathematical Introduction to Fluid Mechanics'' (= Texts in Applied Mathematics 4). Springer US, New York 1990, {{doi|10.1007/978-1-4684-0364-0}}.</ref> <ref name="dautray1990">R. Dautray and J.-L. Lions. ''Spectral Theory and Applications,'' volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.</ref> <ref name="edwards1922">Joseph Edwards: ''A Treatise on the Integral Calculus''. Volume 2. Chelsea Publishing Company, 1922.</ref> <ref name="gibbs1901">[[J. W. Gibbs]], [[Edwin Bidwell Wilson]]: ''[https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis]''. 1901, p. 237, link from [[Internet Archive]].</ref> <ref name="girault1986">[[Vivette Girault|V. Girault]], P.A. Raviart: ''Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms.'' Springer Series in Computational Mathematics. Springer-Verlag, 1986.</ref> <ref name="glotzl2020">Erhard Glötzl, Oliver Richters: ''Helmholtz Decomposition and Rotation Potentials in n-dimensional Cartesian Coordinates''. 2020, {{arXiv|2012.13157}}.</ref> <ref name="glotzl2023">Erhard Glötzl, Oliver Richters: ''Helmholtz decomposition and potential functions for n-dimensional analytic vector fields''. In: ''[[Journal of Mathematical Analysis and Applications]]'' 525(2), 127138, 2023, {{doi|10.1016/j.jmaa.2023.127138}}, {{arXiv|2102.09556v3}}. ''Mathematica'' worksheet at {{doi|10.5281/zenodo.7512798}}.</ref> <ref name="gregory1996">R. Douglas Gregory: ''Helmholtz's Theorem when the domain is Infinite and when the field has singular points''. In: ''[[The Quarterly Journal of Mechanics and Applied Mathematics]]'' 49.3, 1996, pp. 439–450, {{doi|10.1093/qjmam/49.3.439}}.</ref> <ref name="griffiths1999">[[David J. Griffiths]]: ''Introduction to Electrodynamics''. Prentice-Hall, 1999, p. 556.</ref> <ref name="gurtin1962">Morton E. Gurtin: ''On Helmholtz’s theorem and the completeness of the Papkovich-Neuber stress functions for infinite domains''. In: ''[[Archive for Rational Mechanics and Analysis]]'' 9.1, 1962, pp. 225–233, {{doi|10.1007/BF00253346}}.</ref> <ref name="heaviside1893">[[Oliver Heaviside]]: ''Electromagnetic theory''. Volume 1, "The Electrician" printing and publishing company, limited, 1893.</ref> <ref name="helmholtz1858">[[Hermann von Helmholtz]]: ''Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen''. In: ''[[Journal für die reine und angewandte Mathematik]]'' 55, 1858, pp. 25–55, {{doi|10.1515/crll.1858.55.25}} ([http://resolver.sub.uni-goettingen.de/purl?GDZPPN002150212 sub.uni-goettingen.de], [https://www.digizeitschriften.de/dms/img/?PID=GDZPPN002150212 digizeitschriften.de]). On page 38, the components of the fluid's velocity (''u'', ''v'', ''w'') are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (''L'', ''M'', ''N'').</ref> <ref name="johnson1881">[[William Woolsey Johnson]]: ''An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions''. John Wiley & Sons, 1881.<br />See also: [[Method of Fluxions]].</ref> <!-- <ref name="koenigsberger1906">[[Leo Koenigsberger]]: ''Hermann von Helmholtz''. Clarendon Press, 1906, p. 357.</ref> --> <ref name="kustepeli2016">Alp Kustepeli: ''On the Helmholtz Theorem and Its Generalization for Multi-Layers''. In: ''[[Electromagnetics]]'' 36.3, 2016, pp. 135–148, {{doi|10.1080/02726343.2016.1149755}}.</ref> <ref name="littlejohn">Robert Littlejohn: [http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf ''The Classical Electromagnetic Field Hamiltonian'']. Online lecture notes, berkeley.edu.</ref> <ref name="lorenz1963">[[Edward N. Lorenz]]: ''Deterministic Nonperiodic Flow''. In: ''[[Journal of the Atmospheric Sciences]]'' 20.2, 1963, pp. 130–141, {{doi|10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2}}.</ref> <ref name="murray1898">[[Daniel Murray (mathematician)|Daniel Alexander Murray]]: ''An Elementary Course in the Integral Calculus''. American Book Company, 1898. p. 8.</ref> <ref name="peitgen1992">Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar Saupe: ''Strange Attractors: The Locus of Chaos''. In: ''Chaos and Fractals''. Springer, New York, pp. 655–768. {{doi|10.1007/978-1-4757-4740-9_13}}.</ref> <ref name="petrascheck2015">Dietmar Petrascheck: ''The Helmholtz decomposition revisited''. In: ''[[European Journal of Physics]]'' 37.1, 2015, Artikel 015201, {{doi|10.1088/0143-0807/37/1/015201}}.</ref> <ref name="petrascheck2017">D. Petrascheck, R. Folk: ''Helmholtz decomposition theorem and Blumenthal’s extension by regularization''. In: ''Condensed Matter Physics'' 20(1), 13002, 2017, {{doi|10.5488/CMP.20.13002}}.</ref> <ref name="shaw1922">James Byrnie Shaw: ''Vector Calculus: With Applications to Physics''. D. Van Nostrand, 1922, p. 205.<br />See also: [[Green's theorem]].</ref> <ref name="sprossig2009">Wolfgang Sprössig: ''On Helmholtz decompositions and their generalizations – An overview''. In: ''[[Mathematical Methods in the Applied Sciences]]'' 33.4, 2009, pp. 374–383, {{doi|10.1002/mma.1212}}.</ref> <ref name="stewart2011">A. M. Stewart: ''Longitudinal and transverse components of a vector field''. In: ''Sri Lankan Journal of Physics'' 12, pp. 33–42, 2011, {{doi|10.4038/sljp.v12i0.3504}} {{arxiv|0801.0335}}</ref> <ref name="stokes1849">[[George Gabriel Stokes]]: ''On the Dynamical Theory of Diffraction''. In: ''Transactions of the [[Cambridge Philosophical Society]]'' 9, 1849, pp. 1–62. {{doi|10.1017/cbo9780511702259.015}}, see pp. 9–10.</ref> <ref name="suda2019">Tomoharu Suda: ''Construction of Lyapunov functions using Helmholtz–Hodge decomposition''. In: ''Discrete & Continuous Dynamical Systems – A'' 39.5, 2019, pp. 2437–2454, {{doi|10.3934/dcds.2019103}}.</ref> <ref name="suda2020">Tomoharu Suda: ''Application of Helmholtz–Hodge decomposition to the study of certain vector fields''. In: ''[[Journal of Physics]] A: Mathematical and Theoretical'' 53.37, 2020, pp. 375703. {{doi|10.1088/1751-8121/aba657}}.</ref> <ref name="trancong1993">Ton Tran-Cong: ''On Helmholtz’s Decomposition Theorem and Poissons’s Equation with an Infinite Domain''. In: ''[[Quarterly of Applied Mathematics]]'' 51.1, 1993, pp. 23–35, {{JSTOR|43637902}}.</ref> <ref name="vermont">{{cite web |url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf |title=Helmholtz' Theorem |publisher=University of Vermont| access-date=2011-03-11 | archive-url=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf| archive-date=2012-08-13| url-status=dead}}</ref> <ref name="warner1983">Frank W. Warner: ''The Hodge Theorem''. In: ''Foundations of Differentiable Manifolds and Lie Groups''. (= Graduate Texts in Mathematics 94). Springer, New York 1983, {{doi|10.1007/978-1-4757-1799-0_6}}.</ref> <ref name="woolhouse1854">[[Wesley Stoker Barker Woolhouse]]: ''Elements of the differential calculus''. Weale, 1854.</ref> <ref name="zhou2012">Joseph Xu Zhou, M. D. S. Aliyu, Erik Aurell, Sui Huang: ''Quasi-potential landscape in complex multi-stable systems''. In: ''[[Journal of the Royal Society Interface]]'' 9.77, 2012, pp. 3539–3553, {{doi|10.1098/rsif.2012.0434}}.</ref> <ref name="manduca2021">Armando Manduca: ''MR elastography: Principles, guidelines, and terminology''. In: ''[[Magnetic Resonance in Medicine]]'', 2021, {{doi|10.1002/mrm.28627}}{{PMID|33296103}}.</ref> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)