Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Invertible matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivative of the matrix inverse == Suppose that the invertible matrix '''A''' depends on a parameter ''t''. Then the derivative of the inverse of '''A''' with respect to ''t'' is given by<ref>{{cite book |first1=Jan R. |last1=Magnus |first2=Heinz |last2=Neudecker |title=Matrix Differential Calculus : with Applications in Statistics and Econometrics |location=New York |publisher=John Wiley & Sons |edition=Revised |year=1999 |pages=151β152 |isbn=0-471-98633-X }}</ref> : <math> \frac{\mathrm{d}\mathbf{A}^{-1}}{\mathrm{d}t} = - \mathbf{A}^{-1} \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} \mathbf{A}^{-1}. </math> To derive the above expression for the derivative of the inverse of '''A''', one can differentiate the definition of the matrix inverse <math>\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}</math> and then solve for the inverse of '''A''': : <math> \frac{\mathrm{d}(\mathbf{A}^{-1}\mathbf{A})}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{A}^{-1}}{\mathrm{d}t}\mathbf{A} + \mathbf{A}^{-1}\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{I}}{\mathrm{d}t} = \mathbf{0}. </math> Subtracting <math>\mathbf{A}^{-1}\frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}</math> from both sides of the above and multiplying on the right by <math>\mathbf{A}^{-1}</math> gives the correct expression for the derivative of the inverse: : <math> \frac{\mathrm{d}\mathbf{A}^{-1}}{\mathrm{d}t} = - \mathbf{A}^{-1} \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t} \mathbf{A}^{-1}. </math> Similarly, if <math>\varepsilon</math> is a small number then : <math>\left(\mathbf{A} + \varepsilon\mathbf{X}\right)^{-1} = \mathbf{A}^{-1} - \varepsilon \mathbf{A}^{-1} \mathbf{X} \mathbf{A}^{-1} + \mathcal{O}(\varepsilon^2)\,. </math> More generally, if : <math> \frac { \mathrm{d}f(\mathbf{A})}{ \mathrm{d}t} = \sum_i g_i (\mathbf{A}) \frac{\mathrm{d}\mathbf{A}}{\mathrm{d}t}h_i (\mathbf{A}), </math> then, : <math> f (\mathbf{A} + \varepsilon\mathbf{X}) = f (\mathbf{A}) + \varepsilon\sum_i g_i (\mathbf{A}) \mathbf{X} h_i (\mathbf{A}) + \mathcal{O}\left(\varepsilon^2\right).</math> Given a positive integer <math>n</math>, : <math> \begin{align} \frac{ \mathrm{d}\mathbf{A}^{n}}{ \mathrm{d}t} &= \sum_{i=1}^n \mathbf{A}^{i-1}\frac{ \mathrm{d}\mathbf{A}}{ \mathrm{d}t}\mathbf{A}^{n-i},\\ \frac{ \mathrm{d}\mathbf{A}^{-n}}{ \mathrm{d}t} &= -\sum_{i=1}^n \mathbf{A}^{-i}\frac{ \mathrm{d}\mathbf{A}}{ \mathrm{d}t}\mathbf{A}^{-(n+1-i)}. \end{align} </math> Therefore, : <math> \begin{align} (\mathbf{A} + \varepsilon \mathbf{X})^{n} &= \mathbf{A}^{n} + \varepsilon \sum_{i=1}^n \mathbf{A}^{i-1}\mathbf{X}\mathbf{A}^{n-i} + \mathcal{O}\left(\varepsilon^2\right),\\ (\mathbf{A} + \varepsilon \mathbf{X})^{-n} &= \mathbf{A}^{-n} - \varepsilon \sum_{i=1}^n \mathbf{A}^{-i}\mathbf{X}\mathbf{A}^{-(n+1-i)} + \mathcal{O}\left(\varepsilon^2\right). \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)