Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jacobi elliptic functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Jacobi elliptic functions as solutions of nonlinear ordinary differential equations== ===Derivatives with respect to the first variable=== The [[derivative]]s of the three basic Jacobi elliptic functions (with respect to the first variable, with <math>m</math> fixed) are: <math display=block>\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{sn}(z) = \operatorname{cn}(z) \operatorname{dn}(z),</math> <math display=block>\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{cn}(z) = -\operatorname{sn}(z) \operatorname{dn}(z),</math> <math display=block>\frac{\mathrm{d}}{\mathrm{d}z} \operatorname{dn}(z) = - m \operatorname{sn}(z) \operatorname{cn}(z).</math> These can be used to derive the derivatives of all other functions as shown in the table below (arguments (u,m) suppressed): {| class="wikitable" style="text-align:center" |+ Derivatives <math>\frac{\mathrm d}{\mathrm du} \operatorname{pq}(u,m)</math> !colspan="2" rowspan="2"| !colspan="4"|q |- ! c ! s ! n ! d |- !rowspan="6"|p |- ! c |0 ||βds ns ||βdn sn || βm' nd sd |- ! s |dc nc || 0 ||cn dn || cd nd |- ! n |dc sc || βcs ds || 0 || ''m'' cd sd |- ! d |m' nc sc || βcs ns || β''m'' cn sn ||0 |} Also :<math>\frac{\mathrm d}{\mathrm dz}\mathcal{E}(z)=\operatorname{dn}(z)^2.</math> With the [[#Addition theorems|addition theorems above]] and for a given ''m'' with 0 < ''m'' < 1 the major functions are therefore solutions to the following nonlinear [[ordinary differential equation]]s: * <math>\operatorname{am}(x)</math> solves the differential equations <math>\frac{\mathrm d^2y}{\mathrm dx^2}+m\sin (y)\cos (y)=0</math> and :<math>\left(\frac{\mathrm dy}{\mathrm dx}\right)^2=1-m\sin(y)^2</math> (for <math>x</math> not on a branch cut) * <math>\operatorname{sn}(x)</math> solves the differential equations <math>\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1+m) y - 2 m y^3 = 0</math> and <math> \left(\frac{\mathrm{d} y}{\mathrm{d}x}\right)^2 = (1-y^2) (1-m y^2)</math> * <math>\operatorname{cn}(x)</math> solves the differential equations <math>\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1-2m) y + 2 m y^3 = 0</math> and <math> \left(\frac{\mathrm{d} y}{\mathrm{d}x}\right)^2 = (1-y^2) (1-m + my^2)</math> * <math>\operatorname{dn}(x)</math> solves the differential equations <math>\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - (2 - m) y + 2 y^3 = 0</math> and <math> \left(\frac{\mathrm{d} y}{\mathrm{d}x}\right)^2 = (y^2 - 1) (1 - m - y^2)</math> The function which exactly solves the [[Pendulum (mechanics)#Simple gravity pendulum|pendulum differential equation]], :<math>\frac{\mathrm d^2 \theta}{\mathrm dt^2}+c\sin \theta=0,</math> with initial angle <math>\theta_0</math> and zero initial angular velocity is :<math>\begin{align}\theta&=2\arcsin (\sqrt{m}\operatorname{cd}(\sqrt{c}t,m))\\ &=2\operatorname{am}\left(\frac{1+\sqrt{m}}{2}(\sqrt{c}t+K),\frac{4\sqrt{m}}{(1+\sqrt{m})^2}\right)-2\operatorname{am}\left(\frac{1+\sqrt{m}}{2}(\sqrt{c}t-K),\frac{4\sqrt{m}}{(1+\sqrt{m})^2}\right)-\pi\end{align}</math> where <math>m=\sin (\theta_0/2)^2</math>, <math>c>0</math> and <math>t\in\mathbb{R}</math>. ===Derivatives with respect to the second variable=== With the first argument <math>z</math> fixed, the derivatives with respect to the second variable <math>m</math> are as follows: :<math>\begin{align}\frac{\mathrm d}{\mathrm dm}\operatorname{sn}(z)&=\frac{\operatorname{dn}(z)\operatorname{cn}(z)((1-m)z-\mathcal{E}(z)+m\operatorname{cd}(z)\operatorname{sn}(z))}{2m(1-m)},\\ \frac{\mathrm d}{\mathrm dm}\operatorname{cn}(z)&=\frac{\operatorname{sn}(z)\operatorname{dn}(z)((m-1)z+\mathcal{E}(z)-m\operatorname{sn}(z)\operatorname{cd}(z))}{2m(1-m)},\\ \frac{\mathrm d}{\mathrm dm}\operatorname{dn}(z)&=\frac{\operatorname{sn}(z)\operatorname{cn}(z)((m-1)z+\mathcal{E}(z)-\operatorname{dn}(z)\operatorname{sc}(z))}{2(1-m)},\\ \frac{\mathrm d}{\mathrm dm}\mathcal{E}(z)&=\frac{\operatorname{cn}(z)(\operatorname{sn}(z)\operatorname{dn}(z)-\operatorname{cn}(z)\mathcal{E}(z))}{2(1-m)}-\frac{z}{2}\operatorname{sn}(z)^2.\end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)