Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Matrix exponential
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Illustrations == Suppose that we want to compute the exponential of <math display="block">B = \begin{bmatrix} 21 & 17 & 6 \\ -5 & -1 & -6 \\ 4 & 4 & 16 \end{bmatrix}.</math> Its [[Jordan normal form|Jordan form]] is <math display="block">J = P^{-1}BP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 16 & 1 \\ 0 & 0 & 16 \end{bmatrix},</math> where the matrix ''P'' is given by <math display="block">P = \begin{bmatrix} -\frac14 & 2 & \frac54 \\ \frac14 & -2 & -\frac14 \\ 0 & 4 & 0 \end{bmatrix}.</math> Let us first calculate exp(''J''). We have <math display="block">J = J_1(4) \oplus J_2(16) </math> The exponential of a {{math|1 Γ 1}} matrix is just the exponential of the one entry of the matrix, so {{math|1=exp(''J''<sub>1</sub>(4)) = [''e''<sup>4</sup>]}}. The exponential of ''J''<sub>2</sub>(16) can be calculated by the formula {{math|1=''e''<sup>(Ξ»''I'' + ''N'')</sup> = ''e''<sup>''Ξ»''</sup> ''e''<sup>N</sup>}} mentioned above; this yields<ref>This can be generalized; in general, the exponential of {{math|''J''<sub>''n''</sub>(''a'')}} is an upper triangular matrix with {{math|''e''<sup>''a''</sup>/0!}} on the main diagonal, {{math|''e''<sup>''a''</sup>/1!}} on the one above, {{math|''e''<sup>''a''</sup>/2!}} on the next one, and so on.</ref> <math display="block">\begin{align} &\exp \left( \begin{bmatrix} 16 & 1 \\ 0 & 16 \end{bmatrix} \right) = e^{16} \exp \left( \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right) = \\[6pt] {}={} &e^{16} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + {1 \over 2!}\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \cdots {} \right) = \begin{bmatrix} e^{16} & e^{16} \\ 0 & e^{16} \end{bmatrix}. \end{align} </math> Therefore, the exponential of the original matrix {{mvar|B}} is <math display="block">\begin{align} \exp(B) &= P \exp(J) P^{-1} = P \begin{bmatrix} e^4 & 0 & 0 \\ 0 & e^{16} & e^{16} \\ 0 & 0 & e^{16} \end{bmatrix} P^{-1} \\[6pt] &= {1 \over 4} \begin{bmatrix} 13e^{16} - e^4 & 13e^{16} - 5e^4 & 2e^{16} - 2e^4 \\ -9e^{16} + e^4 & -9e^{16} + 5e^4 & -2e^{16} + 2e^4 \\ 16e^{16} & 16e^{16} & 4e^{16} \end{bmatrix}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)