Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monad (category theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Algebras over the symmetric monad ==== Another useful example of a monad is the symmetric algebra functor on the category of <math>R</math>-modules for a commutative ring <math>R</math>.<math display="block">\text{Sym}^\bullet(-): \text{Mod}(R) \to \text{Mod}(R)</math>sending an <math>R</math>-module <math>M</math> to the direct sum of [[symmetric tensor]] powers<math display="block">\text{Sym}^\bullet(M) = \bigoplus_{k=0}^\infty \text{Sym}^k(M)</math>where <math>\text{Sym}^0(M) = R</math>. For example, <math>\text{Sym}^\bullet(R^{\oplus n}) \cong R[x_1,\ldots, x_n]</math> where the <math>R</math>-algebra on the right is considered as a module. Then, an algebra over this monad are commutative <math>R</math>-algebras. There are also algebras over the monads for the alternating tensors <math>\text{Alt}^\bullet(-)</math> and total tensor functors <math>T^\bullet(-)</math> giving anti-symmetric <math>R</math>-algebras, and free <math>R</math>-algebras, so<math display="block">\begin{align} \text{Alt}^\bullet(R^{\oplus n}) &= R(x_1,\ldots, x_n)\\ \text{T}^\bullet(R^{\oplus n}) &= R\langle x_1,\ldots, x_n \rangle \end{align}</math>where the first ring is the free anti-symmetric algebra over <math>R</math> in <math>n</math>-generators and the second ring is the free algebra over <math>R</math> in <math>n</math>-generators.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)