Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Monotone convergence theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Proof based on Fatou's lemma== The proof can also be based on Fatou's lemma instead of a direct proof as above, because Fatou's lemma can be proved independent of the monotone convergence theorem. However the monotone convergence theorem is in some ways more primitive than Fatou's lemma. It easily follows from the monotone convergence theorem and proof of Fatou's lemma is similar and arguably slightly less natural than the proof above. As before, measurability follows from the fact that <math display="inline">f = \sup_k f_k = \lim_{k \to \infty} f_k = \liminf_{k \to \infty}f_k</math> almost everywhere. The interchange of limits and integrals is then an easy consequence of Fatou's lemma. One has <math display="block">\int_X f\,d\mu = \int_X \liminf_k f_k\,d\mu \le \liminf \int_X f_k\,d\mu</math> by Fatou's lemma, and then, since <math>\int f_k \,d\mu \le \int f_{k + 1} \,d\mu \le \int f d\mu</math> (monotonicity), <math display="block">\liminf \int_X f_k\,d\mu \le \limsup_k \int_X f_k\,d\mu = \sup_k \int_X f_k\,d\mu \le \int_X f\,d\mu.</math> Therefore <math display="block">\int_X f \, d\mu = \liminf_{k \to\infty} \int_X f_k\,d\mu = \limsup_{k \to\infty} \int_X f_k\,d\mu = \lim_{k \to\infty} \int_X f_k \, d\mu = \sup_k \int_X f_k\,d\mu.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)