Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Multiplication algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Lower bounds=== There is a trivial lower bound of [[Big O notation#Family of Bachmann–Landau notations|Ω]](''n'') for multiplying two ''n''-bit numbers on a single processor; no matching algorithm (on conventional machines, that is on Turing equivalent machines) nor any sharper lower bound is known. Multiplication lies outside of [[ACC0|AC<sup>0</sup>[''p'']]] for any prime ''p'', meaning there is no family of constant-depth, polynomial (or even subexponential) size circuits using AND, OR, NOT, and MOD<sub>''p''</sub> gates that can compute a product. This follows from a constant-depth reduction of MOD<sub>''q''</sub> to multiplication.<ref>{{cite book |first1=Sanjeev |last1=Arora |first2=Boaz |last2=Barak |title=Computational Complexity: A Modern Approach |publisher=Cambridge University Press |date=2009 |isbn=978-0-521-42426-4 |url={{GBurl|8Wjqvsoo48MC|pg=PR7}}}}</ref> Lower bounds for multiplication are also known for some classes of [[branching program]]s.<ref>{{cite journal |first1=F. |last1=Ablayev |first2=M. |last2=Karpinski |title=A lower bound for integer multiplication on randomized ordered read-once branching programs |journal=Information and Computation |volume=186 |issue=1 |pages=78–89 |date=2003 |doi=10.1016/S0890-5401(03)00118-4 |url=https://core.ac.uk/download/pdf/82445954.pdf}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)