Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Newton's method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example ==== For example, the following set of equations needs to be solved for vector of points <math>\ [\ x_1, x_2\ ]\ ,</math> given the vector of known values <math>\ [\ 2, 3\ ] ~.</math>{{refn | This example is similar to one in reference,<ref name=":3" /> pages 451 and 452, but simplified to two equations instead of three.}} <math> \begin{array}{lcr} 5\ x_1^2 + x_1\ x_2^2 + \sin^2( 2\ x_2 ) &= \quad 2 \\ e^{ 2\ x_1 - x_2 } + 4\ x_2 &= \quad 3 \end{array}</math> the function vector, <math>\ F (X_k)\ ,</math> and Jacobian Matrix, <math>\ J(X_k)\ </math> for iteration k, and the vector of known values, <math>\ Y\ ,</math> are defined below. <math>\begin{align} ~ & F(X_k) ~ = ~ \begin{bmatrix} \begin{align} ~ & f_{1}(X_{k}) \\ ~ & f_{2}(X_{k}) \end{align} \end{bmatrix} ~ = ~ \begin{bmatrix} \begin{align} ~ & 5\ x_{1}^2 + x_{1}\ x^2_{2} + \sin^2( 2\ x_{2} ) \\ ~ & e^{ 2\ x_{1}-x_{2} } + 4\ x_{2} \end{align} \end{bmatrix}_k \\ ~ & J(X_k) = \begin{bmatrix} ~ \frac{\ \partial{ f_{1}(X) }\ }{ \partial{x_{1}} }\ , & ~ \frac{\ \partial{ f_{1}(X) }\ }{ \partial{x_{2}} } ~\\ ~ \frac{\ \partial{ f_{2}(X) }\ }{ \partial{x_{1}} }\ , & ~ \frac{\ \partial{ f_{2}(X) }\ }{ \partial{x_{2}} } ~ \end{bmatrix}_k ~ = ~ \begin{bmatrix} \begin{align} ~ & 10\ x_{1} + x^2_{2}\ , & & 2\ x_1\ x_2+4\ \sin( 2\ x_{2} )\ \cos( 2\ x_{2} ) \\ ~ & 2\ e^{ 2\ x_{1} - x_{2} }\ , & &-e^{ 2\ x_{1} - x_{2}} + 4 \end{align} \end{bmatrix}_k \\ ~ & Y = \begin{bmatrix}~ 2 ~\\~ 3 ~\end{bmatrix} \end{align} </math> Note that <math>\ F(X_k)\ </math> could have been rewritten to absorb <math>\ Y\ ,</math> and thus eliminate <math>Y</math> from the equations. The equation to solve for each iteration are <math>\begin{align} \begin{bmatrix} \begin{align} ~ & ~ 10\ x_{1} + x^2_{2 }\ , & & 2 x_1 x_2 + 4\ \sin( 2\ x_{2} )\ \cos( 2\ x_{2} ) ~\\ ~ & ~ 2\ e^{ 2\ x_{1} - x_{2} }\ , & & -e^{ 2\ x_{1} - x_{2} } + 4 ~ \end{align} \end{bmatrix}_k \begin{bmatrix} ~ c_{1} ~\\ ~ c_{2} ~ \end{bmatrix}_{k+1} = \begin{bmatrix} ~ 5\ x_{1}^2 + x_{1}\ x^2_{2} + \sin^2( 2\ x_{2} ) - 2 ~\\ ~ e^{ 2\ x_{1} - x_{2} } + 4\ x_{2} - 3 ~ \end{bmatrix}_k \end{align}</math> and <math> X_{ k+1 } ~=~ X_k - C_{ k+1 } </math> The iterations should be repeated until <math>\ \Bigg[ \sum_{i=1}^{i=2} \Bigl| f(x_i)_k - (y_i)_k \Bigr|\Bigg] < E\ ,</math> where <math>\ E\ </math> is a value acceptably small enough to meet application requirements. If vector <math>\ X_0\ </math> is initially chosen to be <math>\ \begin{bmatrix}~ 1 ~&~ 1 ~\end{bmatrix}\ ,</math> that is, <math>\ x_1 = 1\ ,</math> and <math>\ x_2=1\ ,</math> and <math>\ E\ ,</math> is chosen to be 1.{{10^|β3}}, then the example converges after four iterations to a value of <math>\ X_4 = \left[~ 0.567297,\ -0.309442 ~\right] ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)