Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Partial fraction decomposition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == *{{cite journal|first1=K. R. | last1=Rao|first2=N. | last2=Ahmed|title=Recursive techniques for obtaining the partial fraction expansion of a rational function |year=1968|volume=11 | number=2|journal=IEEE Trans. Educ.|pages=152β154|doi=10.1109/TE.1968.4320370 | bibcode=1968ITEdu..11..152R}} *{{cite journal | first1=Peter | last1=Henrici |title=An algorithm for the incomplete decomposition of a rational function into partial fractions |journal=Z. Angew. Math. Phys. |year=1971 |volume=22 | number=4 | pages=751β755 |doi=10.1007/BF01587772 | bibcode=1971ZaMP...22..751H | s2cid=120554693 }} *{{cite journal | first1=Feng-Cheng | last1=Chang |title=Recursive formulas for the partial fraction expansion of a rational function with multiple poles |year=1973 |journal = Proc. IEEE |volume=61 | number=8 |pages=1139β1140 |doi=10.1109/PROC.1973.9216 }} *{{Cite journal | last1 = Kung | first1 = H. T. | last2 = Tong | first2 = D. M. | doi = 10.1137/0206042 | title = Fast Algorithms for Partial Fraction Decomposition | journal = SIAM Journal on Computing | volume = 6 | issue = 3 | pages = 582 | year = 1977 | s2cid = 5857432 | url = https://figshare.com/articles/journal_contribution/6605561 }} * {{cite news | first1=Dan |last1=Eustice |first2=M. S.|last2=Klamkin |title=On the coefficients of a partial fraction decomposition |journal= [[American Mathematical Monthly]] |year=1979| jstor=2320421 |volume=86 |number=6 | pages=478β480 }} *{{cite journal |first1=J. J. | last1=Mahoney |first2=B. D. | last2=Sivazlian |title=Partial fractions expansion: a review of computational methodology and efficiency |journal=J. Comput. Appl. Math. |year=1983 |doi=10.1016/0377-0427(83)90018-3 |volume=9 | issue=3 |pages=247β269 |doi-access=free }} *{{cite book |last1=Miller |first1=Charles D. |last2=Lial |first2=Margaret L. |last3=Schneider |first3=David I. |title=Fundamentals of College Algebra |edition=3rd |year=1990 |publisher=Addison-Wesley Educational Publishers, Inc. |isbn=0-673-38638-4 |pages=[https://archive.org/details/fundamentalsofco0000mill_g1q3/page/364 364β370] |url=https://archive.org/details/fundamentalsofco0000mill_g1q3/page/364 }} *{{cite journal |first1=David | last1=Westreich |title=partial fraction expansion without derivative evaluation |year=1991 |journal=IEEE Trans. Circ. Syst. |volume=38 | number=6 |pages=658β660 |doi=10.1109/31.81863 }} *{{springer|id=u/u095160|title=Undetermined coefficients, method of|first=L. D.|last=Kudryavtsev}} *{{cite journal |first1=Daniel J. |last1=Velleman |title=Partial fractions, binomial coefficients and the integral of an odd power of sec theta |year=2002 |journal= Amer. Math. Monthly |volume=109 |number=8 |pages=746β749 |doi=10.2307/3072399 |jstor=3072399 }} *{{cite book | first1=Damian | last1=Slota | first2=Roman | last2=Witula | title=Computational Science β ICCS 2005 |year=2005 | series=Lect. Not. Computer Sci. |chapter=Three brick method of the partial fraction decomposition of some type of rational expression |pages=659β662 | volume=33516 | doi=10.1007/11428862_89| isbn=978-3-540-26044-8 }} *{{cite journal | first1=Sidney H. | last1=Kung |journal=Coll. Math. J. |title= Partial fraction decomposition by division |year=2006 | volume=37 | number=2 | pages=132β134 | doi=10.2307/27646303 |jstor=27646303 }} *{{cite journal | first2=Damian | last2=Slota | first1=Roman | last1=Witula|year=2008 | journal=Appl. Math. Comput. |title=Partial fractions decompositions of some rational functions|pages=328β336 | volume=197 | doi=10.1016/j.amc.2007.07.048 | mr=2396331 }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)