Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Plankton
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Absorption efficiency=== {{see also|biological pump}} The ''absorption efficiency'' (AE) of plankton is the proportion of food absorbed by the plankton that determines how available the consumed organic materials are in meeting the required physiological demands.<ref name=Steinberg12017>{{cite journal |doi = 10.1146/annurev-marine-010814-015924|title = Zooplankton and the Ocean Carbon Cycle|year = 2017|last1 = Steinberg|first1 = Deborah K.|last2 = Landry|first2 = Michael R.|journal = Annual Review of Marine Science|volume = 9|pages = 413–444|pmid = 27814033|bibcode = 2017ARMS....9..413S}}</ref> Depending on the feeding rate and prey composition, variations in absorption efficiency may lead to variations in [[fecal pellet]] production, and thus regulates how much organic material is recycled back to the marine environment. Low feeding rates typically lead to high absorption efficiency and small, dense pellets, while high feeding rates typically lead to low absorption efficiency and larger pellets with more organic content. Another contributing factor to [[dissolved organic matter]] (DOM) release is respiration rate. Physical factors such as oxygen availability, pH, and light conditions may affect overall oxygen consumption and how much carbon is loss from zooplankton in the form of respired {{CO2}}. The relative sizes of zooplankton and prey also mediate how much carbon is released via [[sloppy feeding]]. Smaller prey are ingested whole, whereas larger prey may be fed on more "sloppily", that is more biomatter is released through inefficient consumption.<ref name="Møller2005">{{cite journal |doi = 10.1093/plankt/fbh147|title = Sloppy feeding in marine copepods: Prey-size-dependent production of dissolved organic carbon|year = 2004|last1 = Moller|first1 = E. F.|journal = Journal of Plankton Research|volume = 27|pages = 27–35|doi-access = free}}</ref><ref name="Møller2007">{{cite journal |doi = 10.4319/lo.2007.52.1.0079|title = Production of dissolved organic carbon by sloppy feeding in the copepods Acartia tonsa, Centropages typicus, and Temora longicornis|year = 2007|last1 = Møller|first1 = Eva Friis|journal = Limnology and Oceanography|volume = 52|issue = 1|pages = 79–84|bibcode = 2007LimOc..52...79M|doi-access = free}}</ref> There is also evidence that diet composition can impact nutrient release, with carnivorous diets releasing more [[dissolved organic carbon]] (DOC) and ammonium than omnivorous diets.<ref name=Thor2003>{{cite journal |doi = 10.3354/ame033279|title = Fate of organic carbon released from decomposing copepod fecal pellets in relation to bacterial production and ectoenzymatic activity|year = 2003|last1 = Thor|first1 = P.|last2 = Dam|first2 = HG|last3 = Rogers|first3 = DR|journal = Aquatic Microbial Ecology|volume = 33|pages = 279–288|doi-access = free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)