Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Projective variety
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Kodaira vanishing=== The fundamental [[Kodaira vanishing theorem]] states that for an ample line bundle <math>\mathcal{L}</math> on a smooth projective variety ''X'' over a field of characteristic zero, :<math>H^i(X, \mathcal{L}\otimes \omega_X) = 0</math> for ''i'' > 0, or, equivalently by Serre duality <math>H^i(X, \mathcal L^{-1}) = 0</math> for ''i'' < ''n''.<ref>{{harvnb|Hartshorne|1977|loc=Ch III. Remark 7.15.}}</ref> The first proof of this theorem used analytic methods of Kähler geometry, but a purely algebraic proof was found later. The Kodaira vanishing in general fails for a smooth projective variety in positive characteristic. Kodaira's theorem is one of various vanishing theorems, which give criteria for higher sheaf cohomologies to vanish. Since the Euler characteristic of a sheaf (see above) is often more manageable than individual cohomology groups, this often has important consequences about the geometry of projective varieties.<ref>{{citation| last1=Esnault| first1=Hélène| last2=Viehweg| first2=Eckart |year=1992|title=Lectures on vanishing theorems|publisher=Birkhäuser}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)