Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Radar
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Pulse compression==== {{main|Pulse compression}} The two techniques outlined above both have their disadvantages. The pulse timing technique has an inherent tradeoff in that the accuracy of the distance measurement is inversely related to the length of the pulse, while the energy, and thus direction range, is directly related. Increasing power for longer range while maintaining accuracy demands extremely high peak power, with 1960s [[early warning radar]]s often operating in the tens of megawatts. The continuous wave methods spread this energy out in time and thus require much lower peak power compared to pulse techniques, but requires some method of allowing the sent and received signals to operate at the same time, often demanding two separate antennas. The introduction of new electronics in the 1960s allowed the two techniques to be combined. It starts with a longer pulse that is also frequency modulated. Spreading the broadcast energy out in time means lower peak energies can be used, with modern examples typically on the order of tens of kilowatts. On reception, the signal is sent into a system that delays different frequencies by different times. The resulting output is a much shorter pulse that is suitable for accurate distance measurement, while also compressing the received energy into a much higher energy peak and thus improving the signal-to-noise ratio. The technique is largely universal on modern large radars.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)